• Title/Summary/Keyword: 상세화 기법

Search Result 245, Processing Time 0.038 seconds

A Development of Downscaling Model for Sub-daily Rainfall Based on Bayesian Copula model (Bayesian Copula 모형을 활용한 시간단위 강우량 상세화 기법 모형 개발)

  • Kim, Jin-Young;So, Byung-Jin;Kwon, Duk-Soon;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.229-229
    • /
    • 2016
  • 현재 국내외에서 제공되고 있는 기후변화 시나리오 자료의 경우 일단위로 제공되고 있다. 그러나 수자원 설계 및 계획 시 중요한 입력자료 중 하나는 시간단위 강우 자료이다. 이러한 시간단위 자료는 강우-유추 분석, 댐 설계 및 위험도 분석에 있어 중요한 입력 변수중 하나이므로 기후변화 시나리오에 따른 영향을 평가하기 위해선 신뢰성 있는 상세화 기법이 필요하다. 국내외에서는 일단위에서 일단위로 상세화 하는 기법, 또는 공간상세화 기법 연구는 상당히 진행된바 있는 반면, 시간단위 상세화 기법 연구는 일단위 연구에 비해 상대적으로 미진한 실정이다. 즉 일단위 상세화 기법의 경우 Weather generator, Weather typing 등 다양한 기법이 존재하고 이를 활용한 연구사례가 많지만, 시간단위 상세화 기법의 Poisson 기법을 활용한 사례가 다수 존재하였다. 이러한 이유로 본 연구에서는 기후변화 시나리오에 따른 영향을 평가하기 위해 Bayesian 기법을 도입하여 신뢰성 있는 시간단위 강우량을 생성할 수 있는 모형을 개발하였으며, 연대별로 산정된 결과는 빈도해석을 통해 미래 확률강우량을 제시하였다. 본 연구에서 제안하고자 하는 Bayesian Copula 모형은 기존 주변확률분포(marginal distribution) 매개변수와 Copula 매개변수 추정시 각각 다른 기법을 활용하여 추정하며, 각각 모형에서 발생하는 불확실성은 추정하지 못하는 반면, Bayesian Copula 모형의 경우 매개변수의 사후분포를 정량적으로 제시할 수 있으며, 추정되는 확률강우량 역시 불확실성을 정량적으로 산정할 수 있는 장점을 확인할 수 있었다.

  • PDF

Study for searching optimal parameters for analog based downscaling method (아날로그 공간상세화 기법의 적정 매개변수 탐색 연구)

  • Kim, Seon-Ho;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.66-66
    • /
    • 2022
  • 아날로그 기법은 대표적인 공간상세화 기법 중 하나로써, 과거 기상 현상이 미래 재현된다는 가정 하에 목표 시점과 가장 유사한 기상패턴을 보이는 과거 시점을 활용하여 공간상세화를 수행하는 방법이다. 상세화 목표 시점과 가장 유사한 과거 시점을 찾기 위해서는 선결되어야 하는 매개변수가 존재한다. 특히 상세화 성능에 민감한 것으로 알려진 매개변수로는 목표 시점과 유사한 과거 시점 탐색에 활용되는 시공간 범위, 상세화 변수와 역학적 관계를 가지고 있는 종관기상변수, 상세화에 활용되는 과거 시점의 개수 등이 있다. 아날로그 기법의 매개변수를 탐색하고자 하는 시도는 국외에서 여러 차례 진행되어 왔으나, 각 매개변수는 지역의 기상특징에 따라 상이한 결과를 나타내었다. 국내에서는 국외에서 수행한 탐색 결과를 활용하여 공간상세화를 주로 수행하여 왔지만, 보다 높은 성능의 상세화를 수행하기 위해서는 국내 지역에 맞는 매개변수를 활용하는 것이 타당하다. 본 연구에서는 국내 지역에 적합한 아날로그 공간상세화 매개변수를 탐색하고 이를 제시하고자 한다. 탐색된 매개변수는 아날로그 공간상세화 기법뿐만 아니라 다양한 공간상세화 기법에 활용하능한 정보이기 때문에, 연구결과의 활용성이 높을 것으로 판단된다.

  • PDF

A Statistically Downscaling for Projecting Climate Change Scenarios over the Korean Peninsula (한반도지역에 대한 미래 기후변화 시나리오의 통계적 상세화)

  • Shin, Jin-Ho;Lee, Hyo-Shin;Kwon, Won-Tae;Kim, Min-Ji
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1191-1196
    • /
    • 2009
  • 온실가스 증가에 따른 미래 기후변화가 수자원에 미치는 영향을 평가하기 위하여 전구기후모델(AOGCM)의 기온과 강수 자료를 이용하여 한반도 지역에 대한 통계적 규모 상세화(statistical downsacaling, SDS) 기법을 개발하였다. 개발된 기법은 Cyclostationary Empirical Orthogonal Function (CSEOF) 분석과 회귀분석을 결합한 것으로 관측과 AOGCM 시계열의 통계적 상관성을 이용하고 있다. 20세기말(1973-2000) 동안의 광역규모의 기온(ECMWF)과 강수량(CMAP) 및 AOGCM의 기온과 강수량 자료에 통계적 상세화 기법을 적용하고 비교함으로써 이 기법의 유효성을 검증하였는데, 상세화된 기온과 강수량 자료는 관측된 계절변동성과 월변동성을 잘 모사하였다. 특히, 여름철 관측에 비해 저평가된 AOGCM의 강수량 크기와 변동성이 상세화를 통해 관측치에 근접하게 되었다. AOGCM의 미래 강수량 변화는 21세기 후반에 계절적으로 봄과 여름에 증가할 것을 예상되었다. 상세화된 AOGCM의 강수는 겨울을 제외한 모든 계절에서, 특히 여름철에 가장 많이 증가할 것으로 전망되었다. AOGCM의 미래 기온변화는 21세기 후반으로 갈수록 상승하며, 계절적으로 겨울철의 기온 상승폭이 더 클 것으로 전망되는데, AOGCM을 상세화한 결과에서는 겨울과 더불어 여름에도 기온 상승폭이 클 것으로 전망되었다. 개발된 기법은 역학적 결과와 관측과의 통계적 상관성을 이용하기 때문에 광역규모의 기후적 특성뿐만 아니라 한반도 지형 등 지역적 특성도 모두 반영함과 더불어 광역규모의 자료를 빠른 시간내에 효과적으로 상세화시킬 수 있는 장점도 지닌다. 한편 상세화에 사용된 CSEOF의 모드수 등에 따른 불확실성 등은 통계적 상세화 과정에 개선될 여지가 남아있음을 보여준다.

  • PDF

Comparison of Artificial Neural Networks and LARS-WG for Downscaling Climate Change Scenarios (기후변화 시나리오의 상세화를 위한 인공신경망과 LARS-WG의 모의 기법 평가)

  • Kim, Ji-Hye;Kang, Moon-Seong;Song, In-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.124-124
    • /
    • 2012
  • 기후변화가 수자원에 미치는 영향을 예측하는 데에 널리 사용되는 GCMs (General Circulation Models)는 모의 결과의 시 공간적 해상도가 낮기 때문에 상세화 (Downscaling) 기법을 거쳐 수문 모형에 적용된다. 상세화 기법은 크게 역학적 상세화 (Dynamical downscaling)와 통계적 상세화 (Statistical downscaling)로 구분되며, 종류가 매우 다양하고 각각의 모의 능력에 차이가 있으므로 적절한 기법을 선택할 필요가 있다. 본 연구의 목적은 통계적 상세화 기법 중 인공신경망과 LARS-WG 모형을 활용하여 CGCM3.1 T63의 모의 결과를 상세화하고, 두 모형의 모의 결과를 비교하는 데에 있다. 인공신경망은 비선형함수에 의한 전이함수 모형인 반면 LARS-WG는 추계학적 기상 발생기 모형으로, 각 모형을 이용해 CGCM3.1 T63의 강수량 및 평균기온 모의 결과를 서울 지역에 대해 공간적으로 상세화하였다. 모형의 검 보정은 1971년부터 2000년까지 30년 동안의 서울 관측소 일 기상 자료와 CGCM3.1 T63 (20C3M 시나리오) 모의 결과를 이용하여 수행하였다. 각 기법의 비교 및 평가는 2001년부터 2011년까지 11년 동안의 일 기상 자료와 CGCM3.1 T63 (IPCC SRES A1B 시나리오) 모의 결과를 이용하였다. 분석 결과, 인공신경망 모형은 입력 자료의 형태에 따라 모의 결과가 크게 달라지는 특성을 보였으며, LARS-WG 모형은 강수량을 실제보다 과소 추정하는 경향을 보였다. 본 연구에서는 강수량과 평균기온만을 대상으로 하였으나, 추후에 다른 기상인자를 고려함으로써 모형의 적용성을 보다 종합적으로 판단할 수 있을 것이다.

  • PDF

Future climate forecast of urban region under climate change (기후변화에 따른 도시지역 미래 기후전망)

  • Lee, Sang-Hun;Lee, Moon-Hwan;Kim, Dong-Chan;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.93-93
    • /
    • 2011
  • 전 세계적으로 기후변화로 인한 기상재해의 피해가 매년 증가하고 있으며, 기후변화로 인한 시민들의 안전, 재산, 인명피해 또한 늘어나고 있다. 이러한 피해를 최소화하기 위해서는 도시지역을 중심으로 한 신뢰성 높은 미래 기후전망 기법이 필수적이며, 미래 기후전망을 바탕으로 하여 기후변화로 인한 향후 발생할 수 있는 위험성의 정도를 전망하여 적응대책을 수립할 필요가 있다. 본 연구에서는 도시지역의 미래 기후전망 기법을 개발하여 서울시의 미래기후를 전망한다. 본 연구를 수행하기 위하여 먼저 IPCC 기후시나리오에 대한 조사를 수행하여 자료를 수집한다. 수집한 자료를 바탕으로 역학적 상세화와 통계적 상세화 기법을 이용하여 고해상도 기후 시나리오를 생산하였다. 역학적 상세화 기법은 A2시나리오의 ECHO-G/S에서 생산된 기후 시나리오를 이용하여 지역 기후모델인 RegCM3에 적용하여 상세화 과정을 수행하였다. RegCM3를 이용하여 60km로 상세화한 후에 one-way double-nested system을 구축하여 20km까지 상세화 하였다. 20km 해상도의 기후 시나리오는 서울시와 같은 좁은 지역의 기후를 분석하기에는 어려움이 있으므로, RegCM3에 사용할 수 있는 Sub-BATS라는 기법을 이용하여 5km의 고해상도 기후 시나리오를 생산하였다. 역학적 상세화 결과는 관측결과에 비해 과소 추정되는 경향이 있어, 편차보정을 통하여 관측값에 가까운 자료를 만들어 주었다. 역학적 상세화 결과를 분석한 결과, 기준기간에 비해 미래기간(S3)에는 전체적으로 약 4.9도의 기온상승과 강수량 증가가 나타났으며, 특히 9월에 가장 큰 상승폭을 나타내고 있었다. 강수량의 경우 증가 경향이 뚜렷이 나타나고 있었으며, 여름철에 큰 증가폭을 나타내고 있었다. 통계적 상세화 기법은 역학적 상세화 기법에서 사용된 ECHO-G/S를 포함한 13개의 GCM결과와 우리나라의 57개 지점에 대한 CSEOF기법을 이용하여 기후 시나리오를 생산하였다. 이 자료는 서울시에 대하여 하나의 지점밖에 존재하지 않아, 서울시내의 지역별 미래 기후전망에는 문제가 있었으므로, Delta method라는 기법을 이용하여 서울 및 인근지역의 AWS 35개 지점에 대하여 미래 기후시나리오를 생산하였다. 통계적 상세화 결과, 13개 GCM의 기온변화는 전체평균 약 3.1도 상승하였고, 겨울과 여름철의 변화폭이 가장 크며, 모델의 불확실성 또한 겨울과 여름에 가장 큰 특징을 가지고 있다. 강수량의 경우 MME에서는 약간의 상승은 나타나고 있었지만 모델간의 불확실성은 여름철에 크게 나타나고 있었다. 역학적 및 통계적 상세화 기후 시나리오(ECHO-G/S, A2)를 비교 분석한 결과, 기온은 역학적 상세화 결과가 약간 크게 나타났으며, 전체적으로 유사한 패턴을 보이고 있었다. 강수량 또한 역학적 상세화 결과가 크게 나타나고 있었다. 역학적 및 통계적 상세화 결과는 S1의 경우 유사한 특징을 보이고 있었지만 S3로 갈수록 차이가 크게 나타나고 있었다.

  • PDF

Development of Hourly Rainfall Simulation Technique Using RCP Scenario (RCP 시나리오를 활용한 시간강우량 자료 생성기법 개발)

  • Kim, Jin Young;Kim, Jang-Gyeong;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.6-6
    • /
    • 2015
  • 본 연구에서는 일단위로 제공되는 RCP 시나리오를 Poisson Cluster 기법을 활용하여 시간강우량으로 생성할 수 있는 모형을 개발하는데 목적이 있다. 일반적으로 시간단위 강우량의 경우 수자원 설계 또는 강우-유출 분석시 가장 기본이 되는 입력 자료로서 이에 대한 모의기법 확립이 기후변화에 따른 수문학적 영향 검토의 신뢰성을 결정짓는 핵심 요소이다. 그러나 국내 다수 연구를 살펴보면 기후변화 시나리오의 시 공간적 상세화 기법을 활용한 일단위 상세화 연구는 다수 존재하였지만, 일단이 이하의 시간적 규모에 대한 연구는 미진한 실정이다. 이러한 이유로 본 연구에서는 시단위 상세화 기법시 일반적으로 사용되고 있는 Poisson Cluster 기법을 활용하여 국내 실정에 맞는 시단위 상세화 기법을 개발고자 한다. 본 연구에서는 RCP 시나리오를 시단위강우량 자료로 생성하기 위해 다음과 같은 연구를 진행하였다. 첫째, 본 연구에서는 기상청에서 제공하는 RCP($27km{\times}27km$) 시나리오를 활용하였으며, 1km 격자 단위로 시공간적 상세화 기법을 수행하였다. 둘째, 시공간적으로 상세화 된 자료를 Poisson Cluster 기법을 기반으로 시간단위 자료를 생성하였으며, 기본적인 통계치(평균, 분산, 왜곡도 등)를 활용하여 관측값과 비교 분석 하였다. 마지막으로, 미래 기후변화 시나리오를 동일한 방법으로 시간단위 자료를 생성하고 연 최대값을 추출하여 빈도해석을 통해 미래 극치 확률강우량을 평가하였다. 본 연구 결과 시간단위 자료를 제공함으로써 미래 수자원 설계 및 영향평가를 효과적으로 수행할 것으로 기대되며, 수문기상변화 예측을 위한 신뢰성 있는 자료로 활용될 수 있을 것으로 판단된다.

  • PDF

A New Spatial Indexing Method for Level-Of-Detailed Data (레벨별로 상세화된 공간 데이터를 위한 새로운 공간 인덱싱 기법)

  • 권준희;윤용익
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.361-371
    • /
    • 2002
  • An efficient access technique is one of the most Important requirements in GIS. Using level -of-detailed data, we can access spatial data efficiently, because of no access to the fully detailed spatial data. Previous spatial access methods do not access data with level of detail efficiently. To solve it, a few spatial access methods for spatial data with level of detail, are known. However these methods support only a few kinds of data with level of detail, i.e, data through selection and simplification operations. For the effects, we propose a new spatial indexing method supporting fast searching in all kinds of data with level of detail. In the proposed method, the collection of indexes in its own level are integrated into a single index structure. Experimental results show that our method offers both no data redundancy and high search performance.

  • PDF

Spatial Downscaling of Grid Precipitation Using Support Vector Machine Regression (SVM 회귀 모형을 활용한 격자 강우량 상세화 기법)

  • Moon, Heewon;Baik, Jongjin;Hwang, Sukhwan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1095-1105
    • /
    • 2014
  • A spatial downscaling method using the Support Vector Machine (SVM) Regression for 25 km Tropical Rainfall Measuring Mission (TRMM) Monthly precipitation is proposed. The nonlinear relationship among hydrometeorological variables and precipitation was effectively depicted by the SVM for predicting downscaled grid precipitation. The accuracy of spatially downscaled precipitation was estimated by comparing with rain gauge data from sixty-four stations and found to be improved than the original TRMM data in overall. Especially the positive bias of the original TRMM data was effectively removed after the downscaling procedure. The spatial distributions of 25 km and 1 km grid precipitation were generally similar, while the local spatial trend was better detected by 1 km grid precipitation. The downscaled grid data derived from the proposed method can be applied in hydrological modelling for higher accuracy and further be studied for developing optimized downscaling method incorporation other regression methods.

Evaluation of impact of climate change on inflow to Chungju Dam by user-centered selection of GCM and downscaling method (사용자 중심의 GCM 및 상세화 기법 선정에 따른 충주댐 유입량 기후변화 영향 평가)

  • Cho, Jaepil;Kim, Chul-gyum;Park, Ji-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.25-25
    • /
    • 2018
  • 본 연구는 충주댐을 대상으로 기후변화에 따른 미래 댐운영에 미치는 영향을 평가하기 위하여 연구 목적에 접합한 GCM 및 상세화 기법 선정을 위한 절차를 적용함으로써 사용자 중심의 기후변화 시나리오 상세화 자료가 유입량의 재현성 평가에 미치는 영향을 분석하였다. 우선 편이보정 전의 29개 원시 GCM에 대한 강수량 및 기온의 순단위 시 공간적 재현성 평가를 통해서 상위 16개 GCM을 선정하였다. 이후 상세화 기법을 선정하기 위해서 유입량 전망에 중요하다고 판단되는 총강수량(prcptot) 및 일최대강수량 (rx1day)을 기후지수(Climate Indices)로 선정하였다. 상세화 기법은 과거기간의 재현성이 평가, 미래기간 시그널 왜곡도 평가, 공간상관성에 대한 재현성 평가를 통해 SQM 기법을 선정하였다. 제한적인 기후변화 전망 자료를 고려하여 과거 30년 기간에 대한 모의결과 월단위 모형효율지수(ME) 및 결정계수 ($R^2$)는 모두 0.92로 만족할 만한 결과를 보여 주었다. GCM 선정에 따른 오차는 원시 GCM을 통해 선정된 16개 GCM을 사용한 경우 유입량 재현성 평가에 있어 가장 좋은 결과를 보였다. 전체적으로 상세화 자료를 유역 모델링에 활용하는 경우 GCM의 선정보다는 상세화 기법의 선정이 전체적인 재현성 평가에 있어서 중요한 것으로 나타났다. 미래기간에 대한 평균 유입량 전망은 모든 RCP 시나리오에서 근 미래 보다는 중간 및 먼 미래 기간 동안에 유입량이 증가하는 경향을 보였다. 또한 모든 미래 기간에 대해여 RCP 8.5 시나리오가 RCP 4.5 시나리오와 비교하여 유입량의 증가가 높을 것으로 전망되었다. 홍수 관리측면에서 중요한 일 최대 유입량의 미래 변동은 평균 유입량과 비교하여 최대 두 배 이상의 높은 변화율을 보였다. 댐운영 측면에서는 연간 총 유입량의 변화보다 시기별 유입량의 변동 특성을 이해하는 것이 중요하며, 평균 유입량 및 일단위 최대 유입량 모두 근 미래 기간에 대해서는 RCP 시나리오 모두 7월 및 8월을 중심으로 유입량이 증가하는 경향을 보였다. 반면 중간 미래에서 먼 미래로 갈수록 평균 및 일단위 최대 유입량 모두 전체 기간에 걸쳐 증가하는 경향을 보였다.

  • PDF

A study on spatial indexing for level of detail data (레벨별 상세화 데이터를 지원하는 공간 인덱싱에 대한 연구)

  • 권준희;윤용익
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.97-99
    • /
    • 2001
  • 최근 웹 기반 혹은 모바일 기반의 지리정보시스템과, 높은 품질의 공간데이터에 대한 요구가 증대하고 있다. 이를 해결하기 위해서는 레벨별 상세화를 지원하는 데이터가 제공되어야 하며, 이러만 데이터를 효율적으로 처리하는 공간 인덱싱이 필요하다. 그러나, 레벨별 상세화 데이터를 지원하는 공간 인데싱 기법에 대한 기존 연구는 일부 일반화 연산자만을 지원하고 레벨별 데이터간 일관성을 고려하지 않는다는 문제점을 가진다. 본 연구에서는 이러한 문제를 극복하고자 일관성이 보장되는 맵 일반화 연산자를 모두 지원하는 공간 인덱싱 기법을 제안한다. 이를 통해 레벨별 상세화를 지원하는 데이터가 보다 효과적으로 다루어질 수 있다는 의의를 가진다.

  • PDF