• Title/Summary/Keyword: 상면 구조

Search Result 47, Processing Time 0.024 seconds

The design of microscopic system using zoom structure with a fixed magnification and the independency on the variation of object distance (줌 구조를 이용하여 물체거리가 변해도 상면과 배율이 고정되는 현미경 광학계의 설계)

  • 류재명;조재흥;임천석;정진호;전영세;이강배
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.613-622
    • /
    • 2003
  • The multi-configurative microscopic system for inspecting the wire-bonding of reed frame is designed. Rays refracted by objective lens group which is composed of common lens group of x2 and x6 are splitted by beam-splitter, and Rays through the central region and the boundary region of the object imaged at x2 and x6 through imaging lens groups, respectively. The depth of wire structure on the reed frame has about $\pm$3 mm, in order to observe by uniform magnification without the dependency on the variation of objective distance generated by the depth of wire structure on the reed frame, imaging lens groups should be moved on nonlinear locus like mechanically compensated zoom lenses. The nonlinear equations for zoom locus are derived by using the Gaussian bracket. Refraction powers and positions of each groups are numerically determined by solving the equations, and initial design data for each groups is obtained by using Seidel third order aberration theory. The optimization technique is finally utilized to obtain this microscopic system.

The Composite Behaviors of Fabricated Concrete Deck Simple Bridges (바닥판조립식 단순보교량의 합성거동에 관한 연구)

  • 구민세;장성수;윤우현
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.525-535
    • /
    • 1999
  • In this study, a new method of fabricated concrete deck bridge construction is proposed. This paper details the method in which concrete multi-girders and fabricated concrete decks are rested on the upper flange of the girder and the female to female type sheat-key is formed to connect girder and deck. The finite element analysis is performed to verify the accuracy of the structural behaviors of the fabricated concrete deck bridge by comparing with experimental results. The first task performed is the analysis of the equilibrium of the member force occurring between the deck and the girder. After verifying equilibrium of the member force determined by the finite element analysis, this process is applied to the analysis of maximum member force as the position of design load. This task is utilized to determine the safety of each member according to the same scale finite element model. The final process in this study is to compare the deflection of girders used in experiment with that of the same scale finite element model to verify the strength of fabricated cincrete deck bridge. By this comparison, it is shown that the behavior of the fabricated concrete deck bridge is almost same as the finite element analysis. The second task is to analyze the load distribution effect according to the number of diaphragms and the composite effect due to the cinnection of the deck and girder by the finite element analysis. From the results of second task, it is found that the load distribution effect is not related to the number of diaphragms in case of the central loading, but is related to the number of diaphragms for eccentric loading. Analysis of the load distribution indicates that the effective number of diaphragm is three. It is also shown that the maximum deflection is decreased to almost one half due to the composite action of the deck and girder.

  • PDF

Design Graphs for Asphalt Concrete Track with Wide Sleepers Using Performance Parameters (성능요소를 반영한 광폭 침목형 아스팔트콘크리트 궤도 설계그래프)

  • Lee, SeongHyeok;Lim, Yujin;Song, Geunwoo;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.331-340
    • /
    • 2016
  • Wheel load, design velocity, traffic amount (MGT), stiffness and thickness of sub-layers of asphalt concrete track are selected as performance design parameters in this study. A pseudo-static wheel load computed considering the dynamic amplification factor (DAF) based on the design velocity of the KTX was applied to the top of asphalt concrete track for full three dimensional structural analysis using the ABAQUS program. Tensile strains at the bottom of the asphalt concrete layer and vertical strains at the top of the subgrade were computed from the structural FEA with different combinations of performance parameter values for one asphalt concrete track section. Utilizing the computed structural analysis results such as the tensile strains and the vertical strains, it was possible to develop design graphs to investigate proper track sections for different combination of the performance parameters including wheel load, design velocity, traffic amount(MGT), stiffness and thickness of asphalt concrete layers for any given design life. By analyzing the proposed design graphs for asphalt concrete track, it was possible to propose simple design tables that can be used by engineers for the effective and fast design of track.

Numerical Analysis on the Stress Behaviours Due to Geometry Effects of the Membrane Corrugation (멤브레인의 주름 형상이 응력거동에 미치는 영향에 관한 수치적 해석)

  • Kim Chung-Kyun;Lee Young-Suck;Cha Baeg-Soon;Kim Young-Gyu;Yoon In Soo;Hong Seong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.21-26
    • /
    • 1997
  • This paper presents the numerical results of six corrugation models which compute the stress behaviours and stress levels of the membrane structure under the hydrostatic pressure of cryogenic liquids and thermal loadings using a non -linear finite element analysis program. A three-dimensional analysis of various corrugation geometries was performed on the maximum mean normal stress distributions along the upper surface of the membrane sheet. Comparisons of the FEM results for various geometry models of the corrugation are presented, which shows that the corrugated configuration of the ring knot model can be effectively performed for the combined forces such as the hydrostatic pressure and thermal loading in comparison with the Technigaz type corrugation which has small comer and apex curvatures. The FEM results show that the ring knot corrugation can be used for the deepest depth, 180m of the LNG storage tank in comparison with other corrugation models.

  • PDF

Warpage Improvement of PCB with Material Properties Variation of Core (코어 물성 변화에 따른 인쇄회로기판의 warpage 개선)

  • Yoon Il-Soung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.2 s.39
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, warpage magnitude and shape of printed-circuit board in case that properties of core and thickness of solder resist are varied are investigated. The cause of warpage is coefficient of thermal expansion differences of stacked materials. Therefore, we need small difference of coefficient of thermal expansion that laminated material, and need to decrease asymmetric of top side and bottom side in structure shape. Also, we can control occurrence of warpage heightening hardness of core in laminated material. Composite material that make core are exploited in connection with the structural bending twisting coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. If we use such characteristic, we can control warpage with change of material properties. In this paper, warpage of two layer stacked chip scale package is investigated, and evaluate improvement result using an experiment and finite element method tool.

  • PDF

Flow Structure of Conical Vortices Generated on the Roof of a Rectangular Prism (직사각형 프리즘 상면에서 발생되는 원추형 와의 유동구조)

  • Kim, Gyeong-Cheon;Ji, Ho-Seong;Seong, Seung-Hak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.713-721
    • /
    • 2001
  • Characteristics of the conical vortices on the roof corner of a rectangular prism have been investigated by using a PIV(Particle Image Velocimetry) technique. The Reynolds number based on the free stream velocity and the height of the model was 5.3$\times$10$^3$. The mean, instantaneous velocity vector fields, vorticity fields, and turbulent kinetic energy distribution were measured for two different angles of attack, 30$^{\circ}$and 45$^{\circ}$. The PIV measurements clearly observed not only the conical main vortex and the secondary vortex but also the tertiary vortex which is firstly reported in this paper. Asymmetric formation of the corner vortex for the case of 30$^{\circ}$angle of attack produces relatively the high magnitude of vorticity and turbulent kinetic energy around the bigger vortex which generates the peak suction pressure on the roof. Fairly symmetric features of the roof vortex are observed in the case of 45$^{\circ}$angle of attack, however, the dynamic characteristics are proved to be asymmetric due to the rectangular shape of the roof.

Study on Optimal Design of Traverse Switch System for Maglev Train (자기부상열차용 트레버스 분기기 최적설계 연구)

  • Lee, Younghak;Kim, Chang-Hyun;Lee, Jong-Min
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.717-726
    • /
    • 2016
  • Emergency tracks are necessary in case a broken down train evacuates, a train needs to make way for a faster train behind it, or a train suddenly stops and following trains must avoid colliding with it. Magnetic Levitated (maglev) Trains can change track to enter an emergency track using a segmented switch or a traverse switch. On a traverse switch, a train can change its track when the part of the track that the train is on moves to the other track. Currently manufactured Maglev trains have two bodies and the total length is 25 meters. If a traverse switch is used, it will only require 30 meters of track to move the train to the other track, so, when it comes to efficiency of costs and space, the traverse switch surpasses the articulated switch. Therefore, in this paper, an optimized design to secure structural safety and weight lightening is suggested. To achieve these results, the heights of the piled concrete and girders which are both placed on the top of the traverse switch, are set as design variables. The Finite Element Method (FEM), in application of kriging and in the design of the experiments (DOE), is used. Maximum stress, deformation, and structural weight are compared with the results, and through this process structural safety and weight lightening is proven.

Site Characteristics Around the Gongsansung Circular Pond in Gongju Based on the Seismic Methods (탄성파탐사를 이용한 공주 공산성 원형연못의 지반조사)

  • Oh, Jin-Yong;Suh, Man-Cheol
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.623-631
    • /
    • 2005
  • We applied the seismic method to investigate the site characteristics around the Circular Pond (top diameter 7.3 m, bottom diameter 3 m, and depth 4.78 m) at the Ssangsujung Park within the Gongsansung in Gongju. Previous excavations for the cultural assets beneath the Ssangsujung Park disclosed the assumed site of the Palace of the Beakje Dynasty and the Circular Pond containing the Bakje relics. We demonstrated that the seismic prospecting can be applicable to delineate the underground structure around the cultural properties by the three kinds of seismic approaches: walk-away test, conventional refraction method, and equal-distance refraction survey. The last method which is designed by this work ran detect the I-W variations of seismic velocity in the subsurface medium across the Circular Pond on the basis of the difference of the P-wave arrival times between the 1-m-spacing 24 geophones and the corresponding 24 shots parallel with the geophone profile. From the combined results, prominent three-layer velocity structure is observed around the Circular Pond. The bottom layer is interpreted as the basement rock which is exposed near the Ssangsujung whereas the upper layer with relatively lower velocities is interpreted to be the artificial covering. The basement depth beneath the Circular Pond is deeper than the norhern area. The western basement of Circular Pond has the thicker weaker layer compared with the eastern part. Thus, the middle layer could be constructed as the artificial foundation during the Beakje Dynasty. Consequently, the Kong-sansung Circular Pond is possibly built upwardly rather than digging.

Dynamic Characteristics of Railway Structures under High-Speed Train Loading (고속열차 주행 시 동적하중을 받는 철도구조물의 진동 특성)

  • Rhee, Inkyu;Kim, Jae Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.121-128
    • /
    • 2020
  • The purpose of this study is to investigate the distribution patterns of displacement and acceleration fields in a nonlinear soil ground based on the interaction of high-speed train, wheel, rail, and ground. For this purpose, a high-speed train in motion was modeled as the actual wheel, and the vertical contact of wheel and rail and the lateral contact, caused by meandering motion, were simulated; this simulation was based on the moving mass analysis. The soil ground part was given the nonlinear behavior of the upper ground part by using the modified the Drucker-Prager model, and the changes in displacement and acceleration were compared with the behavior of the elastic and inelastic grounds. Using this analysis, the displacement and acceleration ranges close to the actual ground behavior were addressed. Additionally, the von-Mises stress and equivalent plastic strain at the ground were examined. Further, the equivalent plastic and total volumetric strains at each failure surface were examined. The variation in stresses, such as vertical stress, transverse pressure, and longitudinal restraint pressure of wheel-rail contact, with the time history was investigated using moving mass. In the case of nonlinear ground model, the displacement difference obtained based on the train travel is not large when compared to that of the elastic ground model, while the acceleration is caused to generate a large decrease.