• Title/Summary/Keyword: 상면지상고

Search Result 2, Processing Time 0.016 seconds

An Empirical Model for Estimating Bus Boarding and Alighting Time (버스 승하차시간 추정 모형 개발)

  • Seong, Myeong Eon;Choi, Keechoo;Shin, Kangwon;Chung, Woohyun;Lee, Kyu Jin
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.2
    • /
    • pp.152-161
    • /
    • 2014
  • The total boarding and alighting time models have been developed by applying the multiple regression analysis with three variables; numbers of boarding or alighting passengers, non-sitting passengers, and the step-height from the ground. Such variables have influenced to the total boarding time model with the most influential in the numbers of boarding or alighting passengers and the least in the step-height. On the total alighting time model, the numbers of alighting passengers are the most strongest while the step-heights the least. The total boarding and alighting time models can be used in practices for the prediction of current and future bus stops' capacities in TOD-based towns.

Stray Light Analysis of a Compact Imaging Spectrometer for a Microsatellite STSAT-3 (과학기술위성3호 부탑재체 소형영상분광기 미광 해석)

  • Lee, Jin Ah;Lee, Jun Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.4
    • /
    • pp.167-171
    • /
    • 2012
  • This paper reports on the stray light analysis results of a compact imaging spectrometer (COMIS) for a microsatellite STSAT-3. COMIS images Earth's surface and atmosphere with ground sampling distances of 27 m at the 18~62 spectral bands (0.4 ~ 1.05 ${\mu}m$) for the nadir looking at an altitude of 700 km. COMIS has an imaging telescope and an imaging spectrometer box into which three electronics PCBs are embedded. The telescope images a $27m{\times}28km$ area of Earth surface onto a slit of dimensions $11.8{\mu}m{\times}12.1mm$. This corresponds to a ground sampling distance of 27 m and a swath width of 28 km for nadir looking posture at an altitude of 700 km. Then the optics relays and disperses the slit image onto the detector thereby producing a monochrome image of the entrance slit formed on each row of detector elements. The spectrum of each point in the row is imaged along a detector column. The optical mounts and housing structures are designed in order to prevent stray light from arriving onto the image and so deteriorating the signal to noise ratio (SNR). The stray light analysis, performed by a non-sequential ray tracing software (LightTools) with three dimensional housing and lens modeling, confirms that the ghost and stray light arriving at the detector plane has the relative intensity of ${\sim}10^{-5}$ and furthermore it locates outside the concerned image size i.e. the field of view of the optics.