• Title/Summary/Keyword: 상대적 소속 함수

Search Result 14, Processing Time 0.031 seconds

A Piecewise Linear Transformation Method based on SPMF and Its Application to Linguistic Approximation (표준 매개변수 소속 함수에 기반을 둔 구간 선형 변환 방법과 언어 근사에의 응용)

  • Choe, Dae-Yeong
    • The KIPS Transactions:PartB
    • /
    • v.8B no.4
    • /
    • pp.351-356
    • /
    • 2001
  • 표준 매개변수 소속 함수(SPMF)에 기반을 둔 구간 선형 변환 방법(PLTM)을 제안한다. 이는 구간 선형 변환 방법을 사용해서 비 매개변수 소속 함수(NPMF)로 표현된 퍼지 집합이 매개변수 소속 함수(PMF)로 표현된 퍼지 집합으로 변환될 수 있다는 생각에서 유래되었다. 이 경우, 이들 매개변수들은 퍼지 집합의 구조를 결정하기 위한 특징점들 이라고 할 수 있다. 결과적으로 구간 선형 변환 방법은 비 매개변수 소속 함수를 매개변수 소속 함수로 변환해 줌으로써 비 매개변수 소속 함수에 기반을 둔 퍼지 시스템과 비교해 볼 때 퍼지 시스템이 상대적으로 빠르게 처리될 수 있게 한다. 한편, 표준 매개변수 소속 함수들의 전형적인 형태가 소개되고 분석된다. 끝으로, PLTM의 전형적인 응용을 제시하고 수치적인 예를 보여준다.

  • PDF

A Linguistic Case-based Fuzzy Reasoning based on SPMF (표준화된 매개변수 소속함수에 기반을 둔 언어적 케이스 기반 퍼지 추론)

  • Choi, Dae-Young
    • The KIPS Transactions:PartB
    • /
    • v.17B no.2
    • /
    • pp.163-168
    • /
    • 2010
  • A linguistic case-based fuzzy reasoning (LCBFR) based on standardized parametric membership functions (SPMF) is proposed. It provides an efficient mechanism for a fuzzy reasoning within linear time complexity. Thus, it can be used to improve the speed of fuzzy reasoning. In the process of LCBFR, linguistic case indexing and retrieval based on SPMF is suggested. It can be processed relatively fast compared to the previous linguistic approximation methods. From the engineering viewpoint, it may be a valuable advantage.

Efficiently Color Compensation in Back-Light Image using Fuzzy c-means Clustering Algorithm (FCM을 이용한 역광 이미지의 효율적인 컬러 색상 보정)

  • Kim, Young-Tak;Yu, Jae-Hyoung;Hahn, Hern-Soo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.37-38
    • /
    • 2011
  • 본 논문은 상대적으로 대비도 차이가 크게 나타나는 역광 이미지에 대해서 Retinex 알고리즘을 적용하여 보정 했을 경우 발생하는 밝은 영역에서의 컬러 성분의 손실을 개선하기 위한 새로운 기법을 제안한다. 역광 이미지의 경우 밝은 영역과 어두운 영역에 대한 밝기 차이가 매우 크게 발생하기 때문에 Retinex 알고리즘을 이용하여 영상의 대비도를 향상시킬 경우 밝은 영역에서의 컬러 성분이 손실되는 현상이 발생한다. 이러한 손실을 보완하기 위해서 원본 영상의 밝은 영역에 해당하는 컬러 성분을 Retinex 알고리즘으로 보정된 영상에 추가해준다. Fuzzy c-means 군집화 알고리즘을 이용하여 원본 영상에서의 밝은 영역과 어두운 영역에 대하여 모든 화소의 소속 정도를 나타내는 퍼지 소속 함수를 구한다. 밝은 영역에 대해서의 컬러 성분은 원본 영상 값에 밝은 영역 퍼지 소속 함수를 적용하고, 어두운 영역에 대해서의 컬러 성분은 Retinex 복원 영상 값에 어두운 영역 퍼지 소속 함수를 이용한다. 제안하는 알고리즘의 성능 평가를 위해 역광 현상이 강하게 나타나는 자연영상들을 대상으로 적용하여 기존의 Retinex 알고리즘(MSRCR) 보다 우수한 성능을 가지고 있음을 보였다.

  • PDF

A New Similarity Measure based on RMF and It s Application to Linguistic Approximation (상대적 소수 함수에 기반을 둔 새로운 유사성 측도와 언어 근사에의 응용)

  • Choe, Dae-Yeong
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.463-468
    • /
    • 2001
  • We propose a new similarity measure based on relative membership function (RMF). In this paper, the RMF is suggested to represent the relativity between fuzzy subsets easily. Since the shape of the RMF is determined according to the values of its parameters, we can easily represent the relativity between fuzzy subsets by adjusting only the values of its parameters. Hence, we can easily reflect the relativity among individuals or cultural differences when we represent the subjectivity by using the fuzzy subsets. In this case, these parameters may be regarded as feature points for determining the structure of fuzzy subset. In the sequel, the degree of similarity between fuzzy subsets can be quickly computed by using the parameters of the RMF. We use Euclidean distance to compute the degree of similarity between fuzzy subsets represented by the RMF. In the meantime, we present a new linguistic approximation method as an application area of the proposed similarity measure and show its numerical example.

  • PDF

A Weighted FMM Neural Network and Feature Analysis Technique for Pattern Classification (가중치를 갖는 FMM신경망과 패턴분류를 위한 특징분석 기법)

  • Kim Ho-Joon;Yang Hyun-Seung
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • In this paper we propose a modified fuzzy min-max neural network model for pattern classification and discuss the usefulness of the model. We define a new hypercube membership function which has a weight factor to each of the feature within a hyperbox. The weight factor makes it possible to consider the degree of relevance of each feature to a class during the classification process. Based on the proposed model, a knowledge extraction method is presented. In this method, a list of relevant features for a given class is extracted from the trained network using the hyperbox membership functions and connection weights. Ft)r this purpose we define a Relevance Factor that represents a degree of relevance of a feature to the given class and a similarity measure between fuzzy membership functions of the hyperboxes. Experimental results for the proposed methods and discussions are presented for the evaluation of the effectiveness and feasibility of the proposed methods.

A Modified Fuzzy Min-Max Neural Network for Pattern Classification (수정된 퍼지 최대최소 신경망을 이용한 패턴분류)

  • 최형수;정경훈;김호준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.565-567
    • /
    • 2004
  • 본 연구에서는 효과적인 패턴 분류를 위한 방법론으로서 수정된 퍼지 최대최소 신경망 모델을 제안하고 그 유용성을 고찰한다 제안된 모델에서 각 하이퍼박스는 다차원의 특징공간상에서 한 영역으로 정의되며 각 특징에 대하여 가중치 개념이 추가된 소속함수를 갖는다. 이는 기존의 FMM 신경망에서 모든 특징에 대하여 균일하게 고려되었던 특징의 상대적 중요도를 서로 다른 값으로 반영할 수 있게 한다. 본 연구에서는 제안된 모델의 동작특성 및 학습방법을 소개하며, 실제 패턴 분류문제에 적용한 실험결과를 통하여 제안된 이론의 타당성을 평가한다.

  • PDF

GIS-based Data-driven Geological Data Integration using Fuzzy Logic: Theory and Application (퍼지 이론을 이용한 GIS기반 자료유도형 지질자료 통합의 이론과 응용)

  • ;;Chang-Jo F. Chung
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.243-255
    • /
    • 2003
  • The mathematical models for GIS-based spatial data integration have been developed for geological applications such as mineral potential mapping or landslide susceptibility analysis. Among various models, the effectiveness of fuzzy logic based integration of multiple sets of geological data is investigated and discussed. Unlike a traditional target-driven fuzzy integration approach, we propose a data-driven approach that is derived from statistical relationships between the integration target and related spatial geological data. The proposed approach consists of four analytical steps; data representation, fuzzy combination, defuzzification and validation. For data representation, the fuzzy membership functions based on the likelihood ratio functions are proposed. To integrate them, the fuzzy inference network is designed that can combine a variety of different fuzzy operators. Defuzzification is carried out to effectively visualize the relative possibility levels from the integrated results. Finally, a validation approach based on the spatial partitioning of integration targets is proposed to quantitatively compare various fuzzy integration maps and obtain a meaningful interpretation with respect to future events. The effectiveness and some suggestions of the schemes proposed here are illustrated by describing a case study for landslide susceptibility analysis. The case study demonstrates that the proposed schemes can effectively identify areas that are susceptible to landslides and ${\gamma}$ operator shows the better prediction power than the results using max and min operators from the validation procedure.

A Speed Control of Switched Reluctance Motor using Fuzzy-Neural Network Controller (퍼지-신경망 제어기를 이용한 스위치드 리럭턴스 전동기의 속도제어)

  • 박지호;김연충;원충연;김창림;최경호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.109-119
    • /
    • 1999
  • Switched Reluctance Motor(SRM) have been expanding gradually their awlications in the variable speed drives due to their relatively low cost, simple and robust structure, controllability and high efficiency. In this paper neural network theory is used to detemrine fuzzy-neural network controller's membership ftmctions and fuzzy rules. In addition neural network emulator is used to emulate forward dynamics of SRM and to get error signal at fuzzy-neural controller output layer. Error signal is backpropagated through neural network emulator. The backpropagated error of emulator offers the path which reforms the fuzzy-neural network controller's mmbership ftmctions and fuzzy rules. 32bit Digital Signal Processor(TMS320C31) was used to achieve the high speed control and to realize the fuzzy-neural control algorithm. Simulation and experimental results show that in the case of load variation the proposed control rrethcd was superior to a conventional rrethod in the respect of speed response.sponse.

  • PDF

Image Magnification using Fuzzy Method (퍼지 기법을 이용한 영상 확대)

  • Cho, Seung-Gun;Lee, Ju-Hwa;Woo, Young-Woon;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.209-212
    • /
    • 2010
  • 본 논문에서는 영상을 확대할 경우에 발생하는 영상의 품질 저하를 최소화하기 위하여 원본 영상 픽셀과 확대된 결과 영상 픽셀 간의 명암도 차이와 보간 수행시 적용되는 가중치 값을 퍼지 기법에 적용하여 영상을 확대하는 방법을 제안한다. 제안된 방법은 기존의 양선형 보간법으로 도출된 결과 영상 픽셀과 원본 영상 픽셀 간의 명암도 차이와 보간 수행시 네 개의 픽셀 값에 곱하게 되는 가중치 값을 퍼지 소속 함수에 적용하여 원본 영상의 픽셀 정보와 가장 근접한 특징을 가진 확대된 결과 영상의 픽셀 정보를 최종적으로 도출한다. 제안된 방법을 실험한 결과, 기존의 양선형 보간법에 비해 영상 확대시, 발생하는 문제점인 흐림 현상이 상대적으로 감소하여 영상의 품질이 개선되는 것을 확인하였다.

  • PDF

A Comparative Study of Fuzzy Relationship and ANN for Landslide Susceptibility in Pohang Area (퍼지관계 기법과 인공신경망 기법을 이용한 포항지역의 산사태 취약성 예측 기법 비교 연구)

  • Kim, Jin Yeob;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.301-312
    • /
    • 2013
  • Landslides are caused by complex interaction among a large number of interrelated factors such as topography, geology, forest and soils. In this study, a comparative study was carried out using fuzzy relationship method and artificial neural network to evaluate landslide susceptibility. For landslide susceptibility mapping, maps of the landslide occurrence locations, slope angle, aspect, curvature, lithology, soil drainage, soil depth, soil texture, forest type, forest age, forest diameter and forest density were constructed from the spatial data sets. In fuzzy relation analysis, the membership values for each category of thematic layers have been determined using the cosine amplitude method. Then the integration of different thematic layers to produce landslide susceptibility map was performed by Cartesian product operation. In artificial neural network analysis, the relative weight values for causative factors were determined by back propagation algorithm. Landslide susceptibility maps prepared by two approaches were validated by ROC(Receiver Operating Characteristic) curve and AUC(Area Under the Curve). Based on the validation results, both approaches show excellent performance to predict the landslide susceptibility but the performance of the artificial neural network was superior in this study area.