표준 매개변수 소속 함수(SPMF)에 기반을 둔 구간 선형 변환 방법(PLTM)을 제안한다. 이는 구간 선형 변환 방법을 사용해서 비 매개변수 소속 함수(NPMF)로 표현된 퍼지 집합이 매개변수 소속 함수(PMF)로 표현된 퍼지 집합으로 변환될 수 있다는 생각에서 유래되었다. 이 경우, 이들 매개변수들은 퍼지 집합의 구조를 결정하기 위한 특징점들 이라고 할 수 있다. 결과적으로 구간 선형 변환 방법은 비 매개변수 소속 함수를 매개변수 소속 함수로 변환해 줌으로써 비 매개변수 소속 함수에 기반을 둔 퍼지 시스템과 비교해 볼 때 퍼지 시스템이 상대적으로 빠르게 처리될 수 있게 한다. 한편, 표준 매개변수 소속 함수들의 전형적인 형태가 소개되고 분석된다. 끝으로, PLTM의 전형적인 응용을 제시하고 수치적인 예를 보여준다.
표준화된 매개변수 소속함수에 기반을 둔 언어적 케이스 기반 퍼지 추론 방법을 제안한다. 제안된 방법은 선형 시간 복잡도를 갖는 퍼지 추론을 위한 효율적인 방법을 제공한다. 결과적으로 제안된 방법은 퍼지 추론의 속도를 개선하는데 사용될 수 있다. 언어적 케이스 기반 퍼지 추론 과정에서 표준화된 매개변수 소속함수에 기반을 둔 언어적 케이스 색인과 검색 방법을 제시한다. 이는 기존의 언어 근사 방법과 비교할 때 상대적으로 빠르게 계산될 수 있다. 공학적인 관점에서 이는 가치 있는 장점이 될 수 있다.
본 논문은 상대적으로 대비도 차이가 크게 나타나는 역광 이미지에 대해서 Retinex 알고리즘을 적용하여 보정 했을 경우 발생하는 밝은 영역에서의 컬러 성분의 손실을 개선하기 위한 새로운 기법을 제안한다. 역광 이미지의 경우 밝은 영역과 어두운 영역에 대한 밝기 차이가 매우 크게 발생하기 때문에 Retinex 알고리즘을 이용하여 영상의 대비도를 향상시킬 경우 밝은 영역에서의 컬러 성분이 손실되는 현상이 발생한다. 이러한 손실을 보완하기 위해서 원본 영상의 밝은 영역에 해당하는 컬러 성분을 Retinex 알고리즘으로 보정된 영상에 추가해준다. Fuzzy c-means 군집화 알고리즘을 이용하여 원본 영상에서의 밝은 영역과 어두운 영역에 대하여 모든 화소의 소속 정도를 나타내는 퍼지 소속 함수를 구한다. 밝은 영역에 대해서의 컬러 성분은 원본 영상 값에 밝은 영역 퍼지 소속 함수를 적용하고, 어두운 영역에 대해서의 컬러 성분은 Retinex 복원 영상 값에 어두운 영역 퍼지 소속 함수를 이용한다. 제안하는 알고리즘의 성능 평가를 위해 역광 현상이 강하게 나타나는 자연영상들을 대상으로 적용하여 기존의 Retinex 알고리즘(MSRCR) 보다 우수한 성능을 가지고 있음을 보였다.
상대적 소속 함수(RMF)에 기반을 둔 새로운 유사성 측도를 제안한다. 본 논문에서는 RMF는 퍼지 부분 집합간의 상대성을 쉽게 나타내기 위해 제시되었다. 이러한 RMF의 형태는 매개변수값들에 따라 결정되기 때문에 매개변수 값들만을 조정해 줌으로써 퍼지 부분 집합간의 상대성을 쉽게 나타낼 수 있다. 그러므로 퍼지 부분 집합을 이용해 주관성을 표현할 때 개인이나 문화차이간의 상대성을 쉽게 반영해 줄수 있다. 이 경우이들 매개변수들은 퍼비 부분 집합의 구조를 결정해 주는 특징점들이라고 할수 있다. 결과적으로 퍼지 부분 집합간의 유사성 정도가 RMF의 매개변수들을 이용해서 빠르게 계산될 수 있다. RMF에 의해 퍼지 부분 집합간의 유사성 정도를 계산하기 위해 유클리디안 거리를 사용한다. 한편, 제안된 유사성 측도의 응용 분야로 새로운 언어 근사 방법을 제시하고 수치적인 예를 보여준다.
본 논문에서는 패턴 분류를 위한 수정된 퍼지 최대최소 신경망 모델을 제안하고 그의 유용성을 고찰한다. 이를 위하여 하이퍼박스 내에서 각 특징들에 대하여 가중치 요소론 갖는 새로운 하이퍼큐브 소속함수를 정의한다. 이 가중치 요소는 분류과정에서 임의의 클래스에 대한 각 특징의 상대적인 기여도를 반영한다. 본 연구에서는 이를 위하여 새롭게 정의된 하이퍼박스 생성, 확장 및 축소의 3단계로 이루어지는 학습 방법론을 소개한다. 또한 제안된 모델을 기반으로 하여 학습된 분류기로부터 하이퍼박스 소속함수와 연결가중치를 사용하여 주어진 클래스에 대한 특징의 연관도를 산출하는 형태의 이른바 특징 분석 기법을 제안한다. 이를 위하여 세부적으로 각 특징에 대하여 연관도 척도와 퍼지 소속함수간의 유사도 척도를 정의한다. 또한 실제 패턴 분류문제에 적용한 실험결과를 통하여 제안된 이론의 타당성을 평가한다.
본 연구에서는 효과적인 패턴 분류를 위한 방법론으로서 수정된 퍼지 최대최소 신경망 모델을 제안하고 그 유용성을 고찰한다 제안된 모델에서 각 하이퍼박스는 다차원의 특징공간상에서 한 영역으로 정의되며 각 특징에 대하여 가중치 개념이 추가된 소속함수를 갖는다. 이는 기존의 FMM 신경망에서 모든 특징에 대하여 균일하게 고려되었던 특징의 상대적 중요도를 서로 다른 값으로 반영할 수 있게 한다. 본 연구에서는 제안된 모델의 동작특성 및 학습방법을 소개하며, 실제 패턴 분류문제에 적용한 실험결과를 통하여 제안된 이론의 타당성을 평가한다.
유용광물자원탐사나 산사태 취약성 분석과 같은 지질학적 응용을 목적으로 GIS를 이용하여 다양한 지질자료를 통합하기 위한 수학적 모델이 개발되어 왔다. 여러 공간통합 방법 중에서 불확실한 정보를 효율적으로 다룰 수 있는 것으로 알려진 퍼지 이론을 이용한 지질정보의 통합에 대해서 논의하였다. 그동안 전문가의 의견에 의존하여 지질자료를 표현하는 목표 유도형 통합방법과 달리, 통합 목표와 지질자료 사이의 통계적 관계를 이용하는 자료 유도형 통합 방법을 제안하였다. 제안된 기법은 퍼지 소속함수로의 표현, 퍼지 연산자를 이용한 결합, 비퍼지화, 검증의 4단계로 구성된다. 자료 표현에는 우도비에 기반한 퍼지 소속함수를, 퍼지 소속함수들의 결합에는 퍼지 연산자 네트웍을, 통합결과의 상대적인 가능성값을 도시하기 위해 비퍼지화 단계를 각각 제안하였다. 최종적으로 통합 목표에 대한 의미있는 해석과 다양한 퍼지 연산자 네트웍의 정량적 비교를 위해 공간 분할에 기반한 검증 과정을 제안하였다. 지질학적 응용을 목적으로 제안한 방법론의 적용가능성, 실제 적용시의 제안점을 산사태 취약성 분석 적용연구를 통해 논의하였다. 적용연구 결과, 대상지역에서 산사태에 대한 취약한 지역을 구분하는데 제안기법이 효과적으로 이용될 수 있음을 확인할 수 있었으며, 검증을 통해 최종 퍼지 소속함수의 결합에 ${\gamma}$연산자를 사용한 경우가 최대, 최소 연산자를 사용한 경우에 비해 높은 예측능력을 나타내었다.
스위치드 리럭턴스 전동기(SRM)는 상대적으로 낮은 가격, 간단하고 견고한 구조, 제어의 용이성과 고효율을 가지기 때문에 가변속 구동에서 점점 응용범위가 확대되고 있다. 본 논문에서 신경망이론은 퍼지-신경망 제어기의 소속함수와 퍼지규칙을 결정하는데 사용하였으며, 신경망 에뮬레이터는 SRM의 전방향 동특성을 모사하는데 사용하였다. 에뮬레이터의 역전파 오차는 퍼지-신경망 제어기의 소속함수와 퍼지규칙을 개선하는 경로를 제공한다. 32비트 DSP(TNS329C31)는 고속연산과 퍼지-신경망 제어 알고리즘을 실현하는데 사용하였다. 시뮬레이션과 실험결과는 부하변화의 경우 제안된 제어방법이 속도응답에서 종래의 방법보다 우수하였다.
본 논문에서는 영상을 확대할 경우에 발생하는 영상의 품질 저하를 최소화하기 위하여 원본 영상 픽셀과 확대된 결과 영상 픽셀 간의 명암도 차이와 보간 수행시 적용되는 가중치 값을 퍼지 기법에 적용하여 영상을 확대하는 방법을 제안한다. 제안된 방법은 기존의 양선형 보간법으로 도출된 결과 영상 픽셀과 원본 영상 픽셀 간의 명암도 차이와 보간 수행시 네 개의 픽셀 값에 곱하게 되는 가중치 값을 퍼지 소속 함수에 적용하여 원본 영상의 픽셀 정보와 가장 근접한 특징을 가진 확대된 결과 영상의 픽셀 정보를 최종적으로 도출한다. 제안된 방법을 실험한 결과, 기존의 양선형 보간법에 비해 영상 확대시, 발생하는 문제점인 흐림 현상이 상대적으로 감소하여 영상의 품질이 개선되는 것을 확인하였다.
산사태는 지형, 지질, 임상, 토양 등과 같은 다양한 요인들이 복합적으로 작용하여 발생한다. 따라서 산사태 발생위치와 산사태 유발 요인 사이의 상관관계를 파악할 수 있는 다양한 분석 기법이 사용되고 있으며 본 연구에서는 산사태 위험지역을 정량적으로 예측할 수 있는 효과적인 기법을 제안하고자 퍼지관계 기법과 인공신경망 기법을 이용하여 포항지역의 산사태 취약성을 분석하였다. 취약성 분석을 위해 먼저 산사태 위치를 파악하여 현황도를 작성하였으며, 산사태 발생과 관련 있는 11개의 요인들에 대한 공간 데이터베이스를 구축하였다. 퍼지관계 기법에서는 cosine amplitude method를 이용해 각 요인 별 퍼지 소속 함수 값을 획득하고 퍼지관계 함수 연산을 이용하여 취약성도를 작성하였다. 인공신경망 기법에서는 오류 역전파 알고리즘을 이용하여 산사태와 관련 요인들 간의 상대적 가중치를 결정하고 취약성도를 작성하였다. 두 기법으로 도출된 산사태 취약성도의 ROC(Receiver Operating Characteristic)와 AUC(Area Under the Curve)를 통한 검증 결과는 82.18%와 87.4%로 나타났다. 퍼지 관계 및 인공신경망 기법 모두 높은 예측 정확도를 보여 취약성 분석 기법으로서의 적용 가능성이 있는 것으로 분석되었다. 한편 본 연구지역의 경우 인공신경망 기법이 퍼지관계 기법에 비해 좀 더 나은 예측 정확도를 보이는 것으로 분석되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.