• Title/Summary/Keyword: 상대섬유 길이

Search Result 13, Processing Time 0.034 seconds

Effect of Fiber Orientation and Fiber Contents on the Tensile Strength in Fiber-reinforced Thermoplastic Composites (섬유배향과 섬유함유량이 섬유강화 열가소성수지 복합재료의 인장강도에 미치는 영향)

  • Kim, Jin-Woo;Lee, Dong-Gi
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.13-19
    • /
    • 2007
  • Fiber-reinforced thermoplastic composites not only approach almost near to the strength of thermosetting composite but also has excellent productivity, recycling property, and impact resistance, which are pointed as weaknesses of thermosetting composites. The study for strength calculation of one direction fiber-reinforced thermoplastic composites and the study measuring precisely fiber orientation distribution were presented. Need the systematic study for the data base that can predict mechanical properties of composite material and fiber orientation distribution by the fiber content ratio was not constructed. Therefore, this study was investigated what affect the fiber content ratio and fiber orientation distribution have on the strength of composites. Fiber-reinforced thermoplastic composites by changing fiber orientation distribution and the fiber content ratio were made. Tensile strength ratio of $0^{\circ}$ direction of fiber-reinforced composites increased being proportional the fiber content and fiber orientation function as change from isotropy(J=0) to anisotropy(J=1). But, tensile strength ratio of $90^{\circ}$ direction by separation of fiber filament decreased when tensile load is imposed fur width direction of reinforcement fiber length direction.

Anatomical Characteristics of Kenaf Grown in Reclaimed Land - Volumetric Composition and Cell Dimension - (간척지에서 재배된 양마(kenaf)의 해부학적 특성(II) - 구성 비율 및 세포의 치수 -)

  • Lee, Seon-Hwa;Kwon, Sung-Min;Um, Gi Jeung;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.11-18
    • /
    • 2008
  • Anatomical characteristics of volumetric composition, fiber length, vessel diameter, and crystalline properties of cellulose in kenaf (Hibiscus cannabinus L.) planted in the reclaimed land of Buan-si, Korea were examined to understand the growth characteristics using a light microscopy and an X-ray diffraction method. The samples of kenaf were taken from six positions (3 cm, 35 cm, 70 cm, 105 cm, 280 cm, and 320 cm) of each stem over the growth period (July, August, September, and October) after seeding in the mid-May. In the kenaf stem, phloem constituted 10 to 15 %, xylem 66 to 82%, and pith 7 to 19%. The ray, bast fiber, and remainder comprised 50%, 20%, and 30% of the phloem, respectively. The volume of vessel, ray, and fiber in the xylem was approximately 10, 15, and 75%, respectively. The proportion of cell wall was 30.92% at the base of stem and 46.40% at the top of stem, respectively. The average length of bast fiber and xylem fiber was about 2.8 mm and 0.9 mm, respectively. Radial and tangential diameters of vessel increased with the increase of growth period, while they decreased with increasing the stem height. Relative crystallinity ranged from 70 to 79% in phloem and from 50 to 56% in xylem. Cellulose crystallite width was about 3 nm both in the phloem and xylem. Thus, the volumetric composition and cell dimensions in the phloem and xylem appeared to be varied with the growth period and the stem height.

Errects of the Length of Carbon Fiber on the Wear Properties of Carbon/Carbon Composites (탄소/탄소 복합재료의 마모특성에 대한 탄소섬유 길이의 영향)

  • Ha, Hun-Seung;Kim, Dong-Kyu;Park, In-Seo;Im, Yeon-Su;Yun, Byung-Il
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.292-299
    • /
    • 1993
  • In this paper the effects of the length of carbon fiber on the wear properties of carboni carbon composites were investigated. Carbon/carbon composites were fabricated by the liquid impregnation method using the resol-type phenolic resin as a matrix precursor and PAN-based, non-surface treated carbon fiber as a reinforcement. The measured values of the friction coefficient of carbon/carbon composites against AlSl 304 stainless steel ranged from 0.2 to 0.3 under the operating condition used in this study. The effect of the length of carbon fiber on the friction coefficient of carbon/carbon composites were not found. But, it was realized that the wear rate of carbon/carbon composites tends to increase, as the length of carbon fiber increases.

  • PDF

Effect of Fiber Content and Fiber Orientation on the Tensile Strength in Glass Mat Reinforced Thermoplastic Sheet (GMT Sheet에서 섬유함유율 및 섬유배향이 인장강도에 미치는 영향)

  • Lee, Jung-Ju;Lee, Dong-Gi;Sim, Jae-Ki;Jo, Seon-Hyung;Kim, Jin-Woo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.186-191
    • /
    • 2004
  • we can say that the increasing range of the value of GMT Sheet's tensile strength in the direction of fiber orientation is getting wider as the fiber content increases. It shows that the value of GMT Sheet's tensile strength in the direction of fiber orientation 90 is similar with the value of pp's intensity when fiber orientation function is J= 0.7, regardless of the fiber content. Tensile strength of GMT Sheet is affected by the fiber orientation distribution more than by the fiber content.

  • PDF

Anatomical Characteristics of Three Korean Bamboo Species (국내산 대나무 3종의 해부학적 특성)

  • Jeon, Woo-Seok;Kim, Yun-Ki;Lee, Ju-Ah;Kim, Ah-Ran;Darsan, Byantara;Chung, Woo-Yang;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.29-37
    • /
    • 2018
  • Bamboo is one of the major biomass resources in the world. To obtain valuable information for effective use of bamboo resources in Korea, the anatomical characteristics of the commercial Korean bamboo species (Phyllostachys pubescens, Phyllostachys nigra, and Phyllostachys bambusoides) were analyzed. The structures in bamboo culm were observed by optical and scanning electron microscopy. Also the crystalline properties as relative crystallinity and crystallite width were measured by an X-ray diffraction method. The three Korean bamboo species had the vascular bundle type I with tylosoid in intercellular space. In the outer part of culm, vascular bundles showed denser spacing than inner part. The fiber length in outer part samples of the three bamboo species showed longer than inner part samples. Furthermore, the fiber length showed a significant difference between inner part and outer part in three bamboo species, showing the longest fiber length in Phyllostachys bambusoides. Phyllostachys pubescens showed the greatest diameter in vessel and parenchyma on cross section. Parenchyma cells in Phyllostachys pubescens and Phyllostachys bambusoides showed similar length and width in both radial and tangential sections. The relative crystallinity and crystallite width in outer part samples of the three bamboo species showed higher values than those in inner part samples, with the greatest values from Phyllostachys bambusoides.

Effect of Fiber Orientation on the Tensile Strength in Long-Fiber Reinforced Polymeric Composites (장섬유강화 고분자 복합재료에서 인장강도에 미치는 섬유배향의 영향)

  • Lee, Dong-Gi;Sim, Jae-Ki;Han, Gil-Young;Kim, Hyuk;Kim, Jin-Woo;Lee, Jung-Ju
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.55-60
    • /
    • 2003
  • Case that long-fiber reinforced polymeric composites of fiber orientation situation of a direction state is J=1 that is direction of tensile strength of another state appeared highest. And theoretical tensile strength value of long-fiber reinforced polymeric composites board of fiber orientation situation of a direction state appeared similarly with tensile strength value that long-fiber reinforced polymeric composites board of fiber orientation situation of a direction state. Also, than case that efficiency of fiber orientation situation of long-fiber reinforced polymeric composites is J=1 in it is J=0.1 of fiber orientation situation effect of long-fiber reinforced polymeric composites about 60% high appear.

  • PDF

Steel Fiber Reinforcing Effect Analysis of Slab Panel Structure and Assessment Technics of Toughness (강섬유보강 패널구조의 보강효과 분석 및 인성평가 기법)

  • Jeon, Chan-Ki;Park, Sun-Kyu
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.209-220
    • /
    • 1999
  • This paper is aimed to evaluate the effectiveness of flexural toughness of slab panel structures($60{\times}60{\times}10$) reinforced by steel fiber instead of wire mesh. Steel fiber used in this study is double hooked Dramix type fiber. And the fiber length is 60mm, diameter is 0.8mm, Various assessment methods of toughness index are used to estimate the proper effectiveness. In this experimental study, we find that Johnston, JCI-SF4 and EFNARC method are more effective to assess the flexural toughness of slab panels than the others. And the steel fiber is very effective alternative material to reinforce slab panel structures instead of wire mesh. Fiber volume fraction of 0.5~0.75% is more useful than the others in enhancing the post-peak energy absorption and toughness index by Johnston's $I_{5.5}$ assessment method. And the slab panels reinforcing with steel fiber are more resistant to crack propagation than wire mesh reinforcing slabs.

Study on Electrospinning Behavior of Homogeneously Deacetylated Chitins (균일계 탈아세틸화된 키틴의 전기방사성에 관한 연구)

  • ;Xinying Geng
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.277-278
    • /
    • 2003
  • 키틴은 셀룰로오스와 더불어 자연계에 가장 많이 존재하는 천연고분자(선형다당)로서 $\beta$(1$\longrightarrow$4)-2-deoxy-2-acetamido-D-glucopyranose를 기본단위로 하고, 키토산(chitosan)은 천연적으로는 몇몇 미생물에서 발견되며, 키틴의 탈아세틸화반응(deacetylation)에 의해 생성되는 유도체로서 $\beta$(1$\longrightarrow$4)-2-deoxy-2-amino-D-glucopyranose를 기본단위로 한다는 점에서 상이하다. 하지만 키틴과 키토산은 각 기본단위가 반복된 homopolymer가 아니고 서로 일정 정도의 상대 기본단위를 함유하므로 일종의 공중합체 또는 heteropolymer라고 할 수 있으며, 그 조성비 즉 탈아세틸화도 (degree of deacetylation, 이하 DD)에 따라 키틴과 키티산으로 나누어진다.[1] (중략)

  • PDF

Anatomical and Physical Characteristics of Kenaf Grown in Korea (국내에서 생장한 Kenaf (양마)의 해부 및 물리적 특성)

  • Kim, Nam-Hun;Hwang, Won-Joong;Kwon, Goo-Joong;Kwon, Sung-Min;Lee, Myoung-Ku;Cho, Jun-Hyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.1-7
    • /
    • 2006
  • Anatomical and physical properties of kenaf grown in Chuncheon, Korea were investigated using light and scanning electron microscopy and X-ray diffraction method. Bast fiber, phloem ray, cortex parenchyma cell and sieve tube member were observed in phloem, and vessel element, fiber and ray in xylem. Solitary and multiple radial pores in xylem existed. The cell types of ray parenchyma in radial section were procumbent, upright and square cells. The length of bast fiber increased with increasing the growth period. The length of wood fiber was 0.74~0.82 mm, but was not significantly different between the growth period and stem height. Relative crystallinity was 53~74% in phloem and 43~58% in xylem. Cellulose crystallinity width was 2.68~3.24 nm in phloem and 2.46~2.95 nm in xylem. The green moisture content and green density increased but basic density decreased with increasing the stem height.

Analysis of caffeine in aqueous sample by hollow fiber-liquid microextraction (HF-LPME) (HF-LPME를 이용한 수용액 시료중의 카페인 분석)

  • In, Chi-Yeon;Kim, Taek-Jae;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.84-92
    • /
    • 2008
  • A method for the determination of trace amount of caffeine in urine and various drink samples using hollow fiber-liquid phase microextraction (HF-LPME) and capillary gas chromatograph/nitrogen phosphorus detector (GC/NPD) has been established. HF-LPME method has been optimized with respect to several experimental parameters including the effects of the hollow fiber length, extraction solvent, stirring mode, pH and salt concentration for the determination of caffeine from aqueous samples. The correlation coefficient of calibration curve for caffeine was 0.9994. The average recovery was 102%(n=3). The established method is feasible for the determination of trace amounts of caffeine in several aqueous sample. The limit of detection (LOD) and the limit of quantitation (LOQ) have been found to be 2.5 and 10 ng/mL, respectively. The established HF-LPME method for the analysis of caffeine from aqueous sample can be used for the determination of biological, food and environmental samples.