• Title/Summary/Keyword: 상대생장률

Search Result 60, Processing Time 0.044 seconds

The Growth of Cucumber Seedlings Grown in Paper Pot Trays Affected by Nutrient Management During Seedling Period, Seedling Age, and Night Temperature After Transplanting (종이포트 묘 육묘시 양분관리, 육묘일수 및 정식 후 야온에 따른 오이의 생육)

  • Jang, Yoonah;An, Sewoong;Chun, Hee;Lee, Hee Ju;Wi, Seung Hwan
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.396-403
    • /
    • 2019
  • This study was conducted to investigate the growth of grafted cucumber seedlings in biodegradable paper pot trays influenced by seedling age, nutrient management before transplanting, and night temperature after transplanting. Grafted cucumber seedlings in paper pot trays were supplied with different nutrient solution concentrations of 0.5 x full strength (S) (EC $0.8dS{\cdot}m^{-1}$), 1.0S(EC $1.6dS{\cdot}m^{-1}$), 2.0S(EC $3.2dS{\cdot}m^{-1}$) two times a week until transplanting. 26, 33, 40, and 47 day-old cucumber grafted seedlings were transplanted and grown at three levels of night temperature (10, 15, and $25^{\circ}C$) during ten days. Increasing nutrient solution concentration enhanced the shoot length, number of leaves, leaf area, dry weight, and relative growth rate of seedlings. With increasing seedling age, the differences in growth were greater among nutrient treatments. The dry matter percentage increased with the seedling age, but was lower with higher nutrient concentration. The specific leaf area showed the opposite results. In cucumbers transplanted at 26- or 33-day seedling ages, night temperature did not affect the growth at ten days after transplanting. However, the growth of 40 or 47 day-old seedling decreased at $10^{\circ}C$. Compared with $25^{\circ}C$, the dry weight of cucumbers transplanted at 40- or 47-day seedling ages was depressed by 58% or 71%, respectively, at $10^{\circ}C$. Accordingly, it was concluded that the optimum nutrient solution concentrations and seedling age for the production of grafted cucumber seedlings in biodegradable paper pot trays can be 1.0S and about 30 days, respectively, and night temperature should be maintained at the range of $15-25^{\circ}C$ for promoting the growth after transplanting.

Changes on Initial Growth and Physiological Characteristics of Larix kaempferi and Betula costata Seedlings under Elevated Temperature (온도 증가에 따른 일본잎갈나무와 거제수나무 유묘의 초기 생장과 생리 특성의 변화)

  • Han, Sim-Hee;Kim, Du-Hyun;Kim, Gil-Nam;Lee, Jae-Cheon;Yun, Chung-Weon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.2
    • /
    • pp.63-70
    • /
    • 2012
  • Larix kaempferi and Betula costata seedlings were grown under an elevated temperature ($27^{\circ}C$) for four weeks to understand initial changes on physiological characteristics caused by temperature rising in connection with global warming. At the end of the treatment, growth performance, leaf pigment content, antioxidative enzyme activities and malondialdehyde (MDA) content were measured and analyzed. Relative growth rates of the height of two tree species grown under elevated temperature ($27^{\circ}C$) were lower than those of control ($24^{\circ}C$) and dry weights of leaves, stems and roots were also reduced at higher temperature. Particularly, the root growth reduction of two tree species increased markedly at $27^{\circ}C$ over the study period, which increased the ratio of shoot to root. Under higher temperature, leaf pigment contents decreased, whereas anti-oxidative enzyme activities such as ascorbate peroxidase (APX) and catalase (CAT) increased as compared with the control. But MDA content was not affected by elevated temperature. In conclusion, the elevated temperature leads to root growth reduction, restriction of nutrient uptake from soil and the reduction of leaf pigment contents, which can inhibit the aboveground growth. In addition, higher temperature might act as a stress factor that causes growth reduction through the increase of energy consumption during a growth period.

Evaluation of Factors Related to Productivity and Yield Estimation Based on Growth Characteristics and Growing Degree Days in Highland Kimchi Cabbage (고랭지배추 생산성 관련요인 평가 및 생육량과 생육도일에 의한 수량예측)

  • Kim, Ki-Deog;Suh, Jong-Taek;Lee, Jong-Nam;Yoo, Dong-Lim;Kwon, Min;Hong, Soon-Choon
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.911-922
    • /
    • 2015
  • This study was carried out to evaluate growth characteristics of Kimchi cabbage cultivated in various highland areas, and to create a predicting model for the production of highland Kimchi cabbage based on the growth parameters and climatic elements. Regression model for the estimation of head weight was designed with non-destructive measured growth variables (NDGV) such as leaf length (LL), leaf width (LW), head height (HH), head width (HW), and growing degree days (GDD), which was $y=6897.5-3.57{\times}GDD-136{\times}LW+116{\times}PH+155{\times}HH-423{\times}HW+0.28{\times}HH{\times}HW{\times}HW$, ($r^2=0.989$), and was improved by using compensation terms such as the ratio (LW estimated with GDD/measured LW ), leaf growth rate by soil moisture, and relative growth rate of leaf during drought period. In addition, we proposed Excel spreadsheet model for simulation of yield prediction of highland Kimchi cabbage. This Excel spreadsheet was composed four different sheets; growth data sheet measured at famer's field, daily average temperature data sheet for calculating GDD, soil moisture content data sheet for evaluating the soil water effect on leaf growth, and equation sheet for simulating the estimation of production. This Excel spreadsheet model can be practically used for predicting the production of highland Kimchi cabbage, which was calculated by (acreage of cultivation) ${\times}$ (number of plants) ${\times}$ (head weight estimated with growth variables and GDD) ${\times}$ (compensation terms derived relationship of GDD and growth by soil moisture) ${\times}$ (marketable head rate).

Optimum Irrigation Interval for the Growth of Phalaenopsis Hybrid Seedling in the Aeroponic System (분무경 시스템에서 팔레놉시스 유묘 생육에 적합한 분무간격)

  • Lee, Dong-Soo;Kwon, Oh-Keun;Lee, Yong-Beom;Yae, Byeong-Woo;Lee, Young-Ran
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.234-239
    • /
    • 2010
  • The irrigation interval and time for the supply of nutrient and water to the plant is important in the aeroponic system. This study was conducted to investigate the effect of irrigation interval on the growth of Phalaenopsis hybrid seedlings in the aeroponic system. Young bare-root plants (four leaves, 16 g in fresh weight) were used for this experiment. The composition of nutrient solution was, in $me{\cdot}L^{-1}$, 9 N, 3 P, 4 K, 4 Ca and 2 Mg. The electrical conductivity (EC) and pH of nutrient solution used was $1.2\;dS{\cdot}m^{-1}$ and 5.8, respectively. Irrigation intervals were 10, 20, 30, 40, and 50 minute and each irrigation time was 10 minute. The total fresh and dry weight, the number of branched roots, and relative growth rate at the 20 and 30 min. was greater than 10, 40, 50 min. interval. Especially, the fresh weight of roots at 30 min. interval was the highest. Leaf length was the highest at 30 min. interval but there was no difference in leaf width. The amount of water consumed for a month was 0.71 L per plant and it was reduced with increasing irrigation interval. There was no difference in the amount of consumed mineral contents for 15 days except for potassium. Potassium absorbed was the highest at 30 min. irrigation interval. As a result, the optimum irrigation interval was 30 min for the production of Phalaenopsis hybrid seedlings in the aeroponic system.

Effects of Vernalization, Temperature, and Soil Drying Periods on the Growth and Yield of Chinese Cabbage (춘화, 온도와 토양건조 기간에 따른 배추의 생장 및 수량)

  • Lee, Sang Gyu;Lee, Hee Ju;Kim, Sung Kyeom;Choi, Chang Sun;Park, Sung Tae;Jang, Yoon Ah;Do, Kyung Ran
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.820-828
    • /
    • 2015
  • This study was carried out to determine the effects of vernalization, temperature, and soil water deficit (SD) on mesophyll cells, growth, and yield of Chinese cabbage (Brassica campestris L). The palisade parenchyma and spongy tissues of Chinese cabbage were observed under full irrigation and two weeks of SD treatment. These cells were severely collapsed by four weeks SD treatment. The SD treatment had the greatest influence on the growth of Chinese cabbage among the tested treatment factors (vernalization, temperature, and SD), growth significantly decreased by severe drought treatment (four weeks SD treatment). In addition, the relative growth rate, unit leaf rate, leaf area ratio, specific leaf area, and leaf weight ratio were significantly affected by SD treatment; however, other individual factors and their combined treatments did not influence the analyzed growth parameters. The yield under vernalization after high temperature and full irrigation treatments was 3,056 kg/10 a, which was the greatest among all the tested treatments, while four-week SD treatment significantly reduced the yield. Head formation of Chinese cabbage was not altered under SD treatment, and vernalization treatments did not induce bolting. Our results indicated that collapsing mesophyll cells and reduced growth and yield were induced by SD treatment. Thus we suggest that optimal irrigation system should be install to avoid or overcome crippling drought conditions in the open field.

Genotypic Variation of Rapid Canopy Closure and Its Relationship with Yield of Rice (벼 조기초관폐쇄성의 품종 변이 및 수량과의 관계)

  • Fu, Jin-Dong;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.2
    • /
    • pp.137-143
    • /
    • 2008
  • Rapid canopy closure (RCC) is one of the physiological attributes that may enhance genetic yield potential of rice (Oryza sativa L.) in a growing season. Crop growth before canopy closure could be described by an exponential equation of $y\;=\;{\alpha}{\cdot}{\exp}({\beta}{\cdot}t)$ where $\alpha$ is the crop leaf area index (LAI) or shoot dry weight (DW), t is the thermal time, $\beta$ is the LAI or DW at the beginning of the exponential growth and is the relative growth rate of LAI ($m^2m^{-2}^{\circ}C^{-1}$) or DW($gg^{-2}^{\circ}C^{-1}$). Field experiment using 22 cultivars revealed that the exponential growth phase before canopy closure can be divided into two sections; an earlier section during which crop dry weight and LAI of varieties are highly dependent on $\alpha$ and a second section where crop dry weight and LAI are highly dependent on $\beta$. Grain weight had significantly positive correlation with $\alpha$ parameter and dry weight and LAI during early exponential phase. The parameter $\beta$ of the exponential growth curve had positive and significant correlation with the LAI and dry weight during the late exponential growth phase, grain number per unit area, and grain yield. There was genotypic difference for RCC parameters, $\alpha$ and $\beta$, indicating the possibility of genetic improvement for these traits.

Growth Characteristics of Grafted Tomato Seedlings following Treatment with Various Concentrations of Diniconazole during the Summer Growth Season (하계육묘 시 다양한 Diniconazole 농도로 처리한 토마토 접목묘의 생장 특성)

  • Kim, Ho Cheol;Cho, Yun Hee;Ku, Yang Gyu;Hwang, Seung Jae;Bae, Jong Hyang
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.249-256
    • /
    • 2016
  • This study was performed to investigate the effect of various concentrations of Diniconazole (DC) on the growth and quality of grafted tomato (Solanum lycopersicum) seedlings cultivated during the summer season. Concentrations of DC were set to 0 (non-treatment), 5, 10 and $20mg{\cdot}L^{-1}$, were treated once 3 days after grafting. Rootstock of the seedlings was shorter in the DC $5mg{\cdot}L^{-1}$ and $10mg{\cdot}L^{-1}$ treatment compared to the non-treatment, and the scions were significantly shorter in the DC $20mg{\cdot}L^{-1}$ treatment. Seedlings were significantly shorter in the DC $20mg{\cdot}L^{-1}$ treatment compared with the non-treatment. Leaf area was lower for seedlings subjected to all treatments than for seedlings in non-treatment group, and reduction was dose dependent. In particular, the DC $20mg{\cdot}L^{-1}$ treatment inhibited both leaf and stem growth. The fresh weighs of leaves and stems of the seedlings treated with DC $5mg{\cdot}L^{-1}$ and the fresh weights of roots subjected to all treatments were significantly greater than those of the non-treatment seedlings. Dry weight per organs of the seedlings treated with DC $5mg{\cdot}L^{-1}$ was significantly greater that of the non-treatment seedlings, but the dry weight of leaves of seedling treated with DC $20mg{\cdot}L^{-1}$ was much less than that of the non-treatment seedlings. The T/R ratio of the seedlings was lower for all treatments than for the non-treatment. The relative growth rate of the seedlings was significantly lower in the DC $20mg{\cdot}L^{-1}$ treatment and, the leaf area rate of seedlings was lower in the DC $5mg{\cdot}L^{-1}$ and $10mg{\cdot}L^{-1}$ treatment than in the non-treatment. Therefore, the optimal concentration of Dinoconazole used to produce a suitable grafted tomato seedling in the summer season is $10mg{\cdot}L^{-1}$ or less.

Effect of Plant Population on the Growth, Yield and Quality of Sohyang (Nicotiana tabaccum L.) (소향(Nicotiana tobaccum L.)의 재식밀도와 생육, 수량 및 품종)

  • Bae, S.K.;Lim, H.G.;Son, S.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.2
    • /
    • pp.207-211
    • /
    • 1981
  • The effect of plant populations - 16,667, 14,285, 12,499 or 10,7l4/10a on the agronomic characteristics of an aromatic tobacco, Sohyang was investigated for two years. The growth and number of suckers produced decreased as the population increased. The leaf area index (L.A.I) was higher in thinner planting, but there was no significant difference in weight per unit leaf area between treatments. Yield was highest, 1 24 kg/ l0a, in 16,667 plantings per l0a, but quality was not different among densitites tested. Similar trends were observed in monetary value per l0a. Concentrations of total alkaloids and nitrogen were low in denser planting, but no significant difference was observed in total sugar. The results suggest that about 16,000/10a more would be optimum number of plants for Sohyang.

  • PDF

Height Suppression of Cucumber and Tomato Plug Seedlings Using of Brushing Stimulus (브러싱 자극을 이용한 오이와 토마토 공정묘의 초장 억제)

  • Kim, Hyeon Min;Lee, Hye Ri;Jeong, Hyeon Woo;Kim, Hye Min;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.285-293
    • /
    • 2018
  • This study aimed to evaluate the effect of height suppression of cucumber and tomato plug seedlings as affected by mechanical stimulus using brushing as environment-friendly method. Cucumber (Cucumis sativus L. 'Joeunbaekdadagi') and tomato (Solanum lycopersicum L. 'Mini Chal') seeds were sown in 40-cell plug trays ($54{\times}27.5{\times}5cm$) filled with growing medium on Oct. 9, 2017. The cultivation environment in a venlo-type glasshouse was maintained as cultivation temperature range of $15-25^{\circ}C$ and the relative humidity of $50{\pm}10%$. Nontreatment and diniconazole ($7.5mg{\cdot}L^{-1}$) application at 15 days after sowing were used as the control. In addition, brushing treatments in cucumber and tomato were applied interval of 2, 4 or 6 hrs for 15 and 20 days, respectively. Plant height, hypocotyl length, and internode length were inhibited for cucumber and tomato in the diniconazole treatment than in the control. The leaf size was reduced, both cucumber and tomato, while the SPAD increased under the diniconazole treatment. However, stem diameter of cucumber was the thickest in the 2 hrs brushing interval treatment. Fresh weights of shoot and root were the significantly lowest in the diniconazole treatment. Application of brushing improved seedlings quality by promoting dry weights of shoot and root, and compactness of tomato seedlings. The chlorophyll fluorescence of tomato seedlings drastically decreased with 2 hrs treatment, indicating that mechanical stress by brushing treatment. The relative growth rate of tomato seedlings was significantly lower in the diniconazole treatment, but cucumber seedlings were not significantly different in all treatments. As a results, height suppression of cucumber and tomato seedlings was best achievement in the diniconazole treatment by the chemical as growth regulator. In an environment-friendly point of view, however, it is considered that 2 hrs brushing interval treatment can be the applicability for replacing the chemical methods in plug seedling growth of cucumber and tomato.

Analyses for Early Growth of Terminal Shoots in Persimmon (감나무 정단신초의 초기생장에 대한 분석)

  • Yoon, Young-Whang;Choi, Seong-Tae;Park, Doo-Sang;Rho, Chi-Woong;Kang, Seong-Mo
    • Horticultural Science & Technology
    • /
    • v.30 no.4
    • /
    • pp.385-391
    • /
    • 2012
  • The growth of terminal shoots of persimmon (Diospyros kaki) was analyzed during the first two months from the time of bud sprout to understand the dynamics of their early growth. Field-grown, mature 'Fuyu' and 'Nishimurawase' trees were used in a three-year study at two locations in Gyeongnam province. The growth of terminal shoots was most active from late April, about 10 days after foliation, to early May, followed by a gradual decline by late May. The increase in leaf area continued unabated throughout May. The weight of a flower bud increased slowly until early May and rapidly after flowering. Although its extension growth had been ceased by late May, dry weight (DW) of a terminal shoot continued to increase almost linearly throughout May due to shoot thickening and continued growth of leaves and fruits. In late May, the leaves and the stem accounted for more than 60% and less than 20% of total DW of a shoot respectively; fruit proportion increased to 7 to 17% by then. Relative growth rate (RGR) of the terminal shoot was higher than 213 $mg{\cdot}g^{-1}{\cdot}d^{-1}$ in late April, but declined to less than 63 $mg{\cdot}g^{-1}{\cdot}d^{-1}$ in late May. Like the pattern of seasonal changes in RGR, net assimilation rate (NAR) of the shoots decreased from 1.9 to 2 $mg{\cdot}cm^{-2}{\cdot}d^{-1}$ to 0.5 to 0.8 $mg{\cdot}cm^{-2}{\cdot}d^{-1}$. An early-season 'Nishimurawase' did not differ from a late-season 'Fuyu' in RGR and NAR during the first two months of growth. The early growth of the shoots was affected mainly by the reserves redistributed from permanent organs, however, environmental conditions at the time was also involved.