• Title/Summary/Keyword: 상계요소법

Search Result 47, Processing Time 0.02 seconds

An Analysis of T-Shaped Forging by Upper-Bound Element Technique (상계요소법에 의한 T형 단조 해석)

  • 배원병;김영호;박재우;곽태수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.223-228
    • /
    • 1994
  • A new velocity formulation technique, which contains the advantage of UBET and the shape function of FEM, is proposed. In the proposed technique, a shape function is used to improve the unreasonableness of elemental partition and to solve the difficulty of velocity-field determination. In order to verify the effectiveness of this rechnique, T-shaped forging processes are simulated. The results are compared with these obtained by experimental measurements in T-shaped forging. In T-shaped forging, good agreements between theory and experiment are also confined.

  • PDF

An Analysis for Drawing of Strip by UBET with Rigid Elements (강체요소를 이용한 인발 공정의 상계요소 해석)

  • Choi, Il-Kuk;Choi, Young;Hur, Kwan-Do
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.598-603
    • /
    • 2001
  • For metal forming analysis, upper-bound solution is practical method because the solution is overestimated. It is limited to determine stresses on tools by using upper-bound solution. In this study, new scheme to calculate stresses on tools based on upper bound solution is proposed. To verify the proposed scheme, plane strain drawing has been considered. The stresses on tools obtained by the proposed scheme are compared with results of rigid plastic FEM. And the stresses on tools have been determined by the proposed scheme in the forging within plane strain deformation.

  • PDF

Computation of Ultimate Bearing Capacity of Eccentrically Loaded Footing By Upper Bound of Limit Analysis Method (극한해석 상계법을 이용한 편심하중하의 기초 지지력 산정)

  • Kwon, Oh Kyun;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.187-196
    • /
    • 1992
  • This paper estimates the bearing capacity of the eccentrically loaded footing by the upper bound of limit analysis method. Meyerhof method and Saran method used the limit equilibrium method in the estimation of bearing capacity. But, in this study the bearing capacity is estimated by the upper bound method. In applying the upper bound, the result depends on the failure mechanism. So this analysis uses the conventional failure mechanisms or the modified failure mechanisms. The comparisions are made between the results from this analysis and those obtained from the limit equilibrium method. Also, the influences of the parameters-eccentricity, internal friction angle, surcharge, G-value, and base friction of the footing on the bearing capacity factors have been examined.

  • PDF

A Study on the Process of Tube Spinning for the Titanium Alloy (티타늄 합금재의 튜브 스피닝 공정해석)

  • 홍대훈;황두순;이병섭;홍성인
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.55-63
    • /
    • 2000
  • Studies for tube spin forming have been implemented restrictively compared to spinning process, because of the complex of deformation mechanism. Especially there were not many studies by using FEM(Finite Element Method) for overcoming restriction of upper bound method. In this paper, the tube spinning process is analyzed to produce cylindrical body made by titanium alloy. In analysis, processing parameters was obtained by using upper bound method to consider material properties of titanium alloy and finite element analysis was implemented to investigate the flatness and the elongation of the titanium alloy workpiece by using ABAQUS code. The independent variables are ; material properties of workpiece, angles of roller, reduction of diameter. Three variables, two angles of roller and reduction of diameter are optimized by using the upper bound method. In this method, we can estimate the workable power, working force and reduction of diameter, and also the flatness and the elongation of workpiece by the finite elements analysis using ABAQUS/standard. The results indicates that these variables play a critical factors of spinning process for the titanium alloy and the optimum values of these variables.

  • PDF

상계법에 의한 베벨기어 단조 공정 해석

  • 최창혁;김용조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.67-67
    • /
    • 2003
  • 자동차, 항공기, 산업기계, 운반기계, 철도차량, 공작기계 등 거의 모든 산업부문에서 사용되는 베벨기어의 냉간단조 공정 및 금형 설계를 위한 해석을 수행하였다. 소성가공에 의해 생산된 베벨기어는 기계적 성질이 우수하여 동력 전달장치의 수명연장 및 신뢰성, 소형화 등을 달성할 수 있으며 생산 원가 절감의 효과가 크기 때문에 냉간 단조의 공정설계는 매우 중요하다. 베벨기어의 단조에 대한 상계해석 결과는 금형 설계 시 프레스에 필요한 단조하중을 예측할 수 있으므로 프레스의 최적성형과 안전한 금형 설계를 도모할 수 있다. 따라서 본 연구에서는 베벨기어의 냉간 단조시의 내부 동적 가용속도 장을 제시하였고 단조하중, 금속유동 등을 계산하였다. 또한 강소성 유한요소해석을 동시에 수행하여 제시한 동적 가용속도장의 적절성을 비교 검토하였다. 본 연구의 결과는 베벨기어의 적절한 냉간 단조 성형공정 및 공정설계를 위한 기초자료로 활용될 수 있을 것이다.

  • PDF

An Analysis of Near-Net Forging of External Spline by an Upper Bound Elemental Technique (상계요소법에 의한 External Spline의 Near-Net 단조해석)

  • 양정호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.206-211
    • /
    • 1996
  • Closed-die forging of external spine is analysed using an upper bound elemental technique. The kinematically admissible velocity field for three-dimensional deformation in forging of the external spine with trapezoidal teeth was obtained. The upper bound to the deforming load necessary and the the deformed configurations are predicted using integration of the formulation of energy expressions which were obtained from B(upset forging method) were considerd in the present analysis and the theoretical results compared with experimental ones Experiments were carried out on plasticine as model material at room temperature where talcum powder was used as a lubricant. The present investigation revealed that the analytical method B predicts a reducet forging load and improved configuration better than method A for the forged products.

  • PDF

Closed-Die Forging Analysis of Clutch Teeth Using An Upper Bound Elemental Technique (상계요소법에 의한 클러치 치형의 밀폐단조해석)

  • 양정호;이상태;김용조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.134-138
    • /
    • 1996
  • A simple kinematically admissible velocity field for closed-die forging of clutch teeth is analysed which takes account of the profiled teeth chosen kinematically by approximating these as straight taper teeth. The upper bound load and the deformed configurations are predicted by the velocity field at varying punch movements considering differing frictional factors. Experiments were carried out using a model material of plasticine at room temperature where talcum powder was used as a lubricant. The theoretical predictions of the forging load and the relative pressures are found to be in reasonably good agreement with the experimental results.

  • PDF

Bearing Capacity Factor of Shallow Foundation in Undrnined Clay Using the Diagrammatic Upper and Lower Bound Methods (도식적 상.하계법을 이용한 비배수 점토지반에서 얕은 기초의 지지력계수)

  • Lee, Yong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.45-59
    • /
    • 2011
  • This study introduces the diagrammatic Upper and Lower Bound (UB and LB) methods theoretically in order to derive the bearing capacity factor, $N_c$ in undrained clay and to compare with Prandtl's exact solution (1921). As a result of the theoretical study, an exact solution comes out when the UB and LB solutions are the same. In addition, the finite element analyses show that the failure loads approach to the bearing capacity factor of 5.14. Results of the FEA significantly depend on the finite element type, a number of elements, and a number of increments. From this study the exact solution defines that solutions from UB and LB are the same. However, this situation is very difficult to process, so we can confirm the exact solution as a range between UB and LB solutions.

자동차용 충격흡수기의 튜브 스피닝 공정 해석

  • 김영호;박재우;조호성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.33-38
    • /
    • 2000
  • In process of tube spinning far shock absorber on vehicles, the selection of feed rate and rounding radius of forming roller and revolution speed of tube and forming roller, forming gap between die and forming roller are very important factors to obtain the optimal process result. In this paper, rigid-plastic FEM and UBET analysis are applied to verify effect of each factors by forming load. We can obtain the optimal conditions to prevent defects during processing.

  • PDF

Study on Yield Behavior of Semi-Solid Material by Finite Element Method and Upper-Bound Method (유한요소법과 상계법에 의한 반용융 재료의 항복거동 연구)

  • Choi, Jae-Chan;Park, Joon-Hong;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.89-95
    • /
    • 1999
  • The compression behavior of semi-solid materials in studied from a viewpoint of yield criteria and analysis methods. To describe the behavior of materials in semi-solid state, several theories have been proposed by extending the concept of plasticity of porous compressible materials. in the present work, the upper-bound method and the finite element method are used to model the simple compression process using yield criteria of Kuhn and Doraivelu. Segregation between solid and liquid which cause defect of product is analysed for Sn-15%Pb alloy is compared with the experimental result of Charreyron et al..

  • PDF