• Title/Summary/Keyword: 삼첩기

Search Result 18, Processing Time 0.028 seconds

Karst 지형의 보고와 개발에 관한 문제점 -전북지형의 limestone의 분포지역을 중심으로-

  • 김대경
    • Journal of the Speleological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.18-21
    • /
    • 1976
  • 각종지질도와 지질도폭에 의거하여 적화암지역이 분포한 고생대에서 중생대초에 속하는 조선계와 평안계를 우선 찾아야 할것애다. 그러나 전북 지방에 있어서는 조선계는 거의 찾아 볼수 없고 평안계는 몇몇 지역에 분포하고 있었다. 평안계는 상부 석탄기(Upper Carboniferous)에서 삼첩기(Trissic)에 형성한 지층이다. (중략)

  • PDF

Geology and Polymetallic Mineralization in the Cusco Area, Peru (페루 꾸스코 지역 지질특성과 다금속 광화작용)

  • Ryoo, Chung-Ryul;Heo, Chul-Ho;Munoz, Michael Valencia;Cornejo, Raymond Rivera;Angeldonis, Alexander Santisteban
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.41-50
    • /
    • 2012
  • 페루 남동부 지역에 위치한 꾸스코 동-금을 포함한 다중금속 광상 지역의 지질은 고생대 페름기-중생대 삼첩기 변성퇴적암인 미투(Mitu)층군과 이를 관입한 동시기 관입암으로 구성되어 있다. 조사지역은 페름기-삼첩기 관입암과 관련된 U-W-Sn-Mo, Au-Cu-Pb-Zn, REE 광화작용과 관련된 금속광화 대로 알려져 있다. 특히 해당 관입암은 대자율 측정 결과 S-type, 티탄철석계열과 관련이 있는 것으로 보인다. 꾸스코 지역은 깔까 북쪽과 시꾸아니 부근에 주요 광화대가 발달하고 있다. 조사대상 광상은 아줄 동, 올미오 동, 빅토리아 금, 빠딴자 동, 나우챠피-초차까나 동, 체카 금광상이다. 아줄 광상의 모암은 안산암질암이며 광석광물로는 반동석 및 황동석이 산출하며, 동은 7.81~15.3%의 범위를 가지고 평균 10.7%이다. 올미오 광상의 모암은 흑색편암이며 엽리를 따라 산화동이 충진되어 있고, 동은 0.61~2.60%의 범위를 가지고 평균 1.74%이다. 빅토리아 광상의 모암은 변성퇴적암이며, 석영맥 충진형 광상으로 금함량은 < 0.1 g/t, 은함량은 < 0.1~< 0.3 g/t이다. 빠딴자 광상에서는 이암 또는 실트암의 층리를 따라 충진하고 있는 산화동이 산출하며, 동은 3.74~9.21%의 범위를 보이며 평균 6.21%이다. 나우챠피-초차까나 광상은 적색사암의 층리를 교대충진하고 있는 산화동 광체이며, 동은 1.62~10.5%의 범위를 가지며 평균 6.39%이다. 체카 광상은 모암인 규암이 각력화작용을 받은 부분에서 금이 산출되고 있는 것으로 보고되어있으나 분석결과 금이 탐지되지는 않았다.

Rb-Sr Isotopic Composition of Mesozoic Sancheong Syenite and Its Geologic Implication (중생대 산청섬장암의 Rb-Sr 조성과 의미)

  • Park Kye-Hun;Kim Dong-Yeon;Song Yong-Sun;Cheong Chang-Sik
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.1 s.43
    • /
    • pp.1-9
    • /
    • 2006
  • Sr isotopic compositions are determined from the syenite of Sancheong area, yielding age of $211{\pm}23(2\sigma)$ Ma and $^{87}Sr/^{86}Sr$ initial ratio of $0.70598{\pm}0.00060$. Such result confirms that Sancheong syenite was emplaced during the Mesozoic around the Triassic-Jurassic boundary. Rather low initial $^{87}Sr/^{86}Sr$ ratio suggests insignificant influence of old crustal materials. There are strong contrast in rock types of plutonic associations between Sancheong-Macheon area and adjacent Hamyang-Geochang area to the north, i.e. syenite-diorite-gabbro and granite-granodiorite respectively. $^{87}Sr/^{86}Sr$ initial ratios also show distinction between these areas. Such differences suggest regional contrast in tectonic environments between them.

Metamorphism and Deformation of the Late Paleozoic Pyeongan Supergroup in the Taebaeksan Basin: Reviews on the Permo-Triassic Songrim Orogeny (태백산분지에 분포하는 후기 고생대 평안누층군의 변성-변형작용: 페름-삼첩기 송림 조산운동의 고찰)

  • Kim, Hyeong-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.151-171
    • /
    • 2012
  • The Permo-Triassic Songrim orogeny in the Korean peninsula was a major tectonic event involving complicated continental collisions at the eastern margin of Eurasia. Based on the previous studies on the metamorphic and deformations features of the Songrim orogeny, this paper presents metamorphic and structural characteristics and timing of the Songrim orogeny in the Taebaeksan basin, and discuss about correlation of the tectono-metamorphic evolution of the Taebaeksan basin with the Okcheon basin and the Imjingang belt with a combined analysis of bulk crustal shortening direction, metamorphic P-T and T-t (time) paths. The metapelites in the Pyeongan Supergroup in the northeastern margin of the Taebaeksan basin have experienced lower-temperature/medium-pressure (LT/MP) regional metamorphism followed by high-temperature contact metamorphism due to the Jurassic granite intrusion. The earlier LT/MP regional metamorphism produced two loops of clockwise P-T-d (deformation) paths combined with four deformation events ($D_1-D_4$). The first loop concomitant with $D_1$ and $D_2$ occurred at $400-500^{\circ}C$, 1.5-3.0 kbar, and related with growth of syn-$D_1$ chloritoid and andalusite, post-$D_1$ margarite, Ca-rich syn-$D_2$ or post-$D_2$ plagioclase. The second loop accompanying $D_3$ and $D_4$ occurred at $520-580^{\circ}C$, 2.0-6.0 kbar, and associated with the growth of syn-$D_3$ garnet and staurolite, and syn-$D_4$ and/or post-$D_4$ andalusite porphyroblasts. Furthermore the syn-$D_1$ chloritoid and andalusite porphyroblasts grew during E-W bulk crustal shortening, whereas the syn-$D_3$ garnet and staurolite, and the syn-$D_4$ and/or post-$D_4$ andalusite porphyroblasts have grown under N-S bulk crustal shortening. The similarity in the characteristics and timing of the metamorphism and bulk crustal shortening directions between the Okcheon and Imjingang belts suggest that the peak metamorphic conditions tend to increase toward the western part (Imjingang belt and southwestern part of the Gyeonggi Massif) from the eastern part (Taebaeksan basin). The E-W bulk crustal shortening influenced the eastern part of the Okcheon belt, whereas the N-S bulk crustal shortening resulted in strong deformation in the Imjingang and Okcheon belts. Consequently, the Permo-Triassic Songrim orogeny in the Korean peninsula is probably not only related to collision of the North and South China blocks, but also to the amalgamation of terrane fragments at the eastern Eurasia margin (e.g., collision of the Sino-Korean continent and the Hida-Oki terrane).

GIS-based Areal Distribution Ratios and Characteristics of Constituent Rocks with Geologic Ages and Rock Types in Jeonnam and Gwangju Areas (전남과 광주지역 구성암류의 GIS에 의한 지질시대별 암층별 분포율 및 분포특성)

  • Yun, Hyun-Soo;Lee, Jin-Young;Hong, Sei-Sun;Yang, Dong-Yoon;Kim, Ju-Yong;Cho, Deung-Lyong
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.153-177
    • /
    • 2013
  • To get the various data on geological information, distributional ratios and characteristics of constituent rocks with geologic ages and rock types were obtained by ArcGIS 10.1 program, digital geologic and geomorphic maps of 1:250,000 scale in Jeonnam and Gwangju areas. In the Jeonnam area, geologic ages can be largely divided into 7, in which their distribution ratios show decreasing trends in the order of Cretaceous, Precambrian, Jurassic, Quaternary, Age-unknown, Carbonifeorus-Triassic and Triassic, and the former fours make the most prevailing ratios of 94.80%. Rock types in the area can be assorted into 57 ones, in which major 7 ones occupy the dominant ratio of 71.68%. Among them, Kav (acidic volcanics+rhyolite and rhyolitic tuff) show much more distribution ratios than the others. It shows more aspects distributed in north, west, middle, east and south parts, especially in Sinan-Mogpo-Yeongam of west and Haenam of south parts in the area, respectively. On the other hand, geological ages in Gwangju area can be largely divided into 5, in which their distribution ratios show decreasing trends in the order of Jurassic, Quaternary, Cretaceous, Precambrian and Age-unknown, and the former fours occupy almost the whole ratio of 98.95%. Rock types in the area are 12 ones, in which major four ones make up the dominant value of 91.30%. Among them, Jurassic granites of the most dominant value are mostly occupied in the southwest-northeast part of the area. Next dominative Quaternary alluvium is mostly developed along the Yeongsan river, the Hwangryong river and their channel junction. And Yongdu and Donggye plains are well developed around the Yeongsan riverline, and channel junction of the Yeongsan and Hwangryong rivers in the area, respectively.

Sphene U-Pb ages of the granodiorites from Gimcheon, Seongju and Anui areas of the middle Yeongnam Massif (영남육괴 중부 김천, 성주 및 안의지역 화강섬록암의 스핀 U-Pb 연대)

  • Park Kye-Hun;Lee Ho-Sun;Cheong Chang-Sik
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2005
  • Sphene U-Pb ages were determined for the granodiorites from Gimcheon, Seongju and Anui areas of the middle Yeongnam massif. The determined ages were in the narrow range of 195.7±2.4∼200.8±1.9(2σ) Ma that are approximately coincident with the boundary between Triassic and Jurassic. Even though the studed plutons are aerially separated, they reveal quite similar major element compositions and almost identical ages, suggesting that they were generated from the similar source materials under the identical tectonic environment and thus they can be considered to form a single suite. Considering the age and spatial distribution of the Triassic to Lower Jurassic plutons of the Yeongnam Massif and Okcheon Belt, it seems that there were episodic changes in tectonic environment in both areas with relatively short intervals. In general, the compressive environment of active continental margin was prevailed. However, the tensional environment of within-plate was also appeared several times intermittently. In conclusion, Yeongnam Massif and Okcheon Belt experienced distinct tectonic environments during Triassic to Lower Jurassic, providing important clue to reveal the crustal evolution of the Korean Peninsula.

K-Ar and $^{40}$ Ar/$^{39}$ Ar Ages from Metasediments in the Okcheon Metamorphic Belt and their Tectonic Implication (옥천 변성대 변성퇴적암의 K-Ar및 $^{40}$ Ar/$^{39}$ Ar 연대와 그 의의)

  • 김성원;오창환;이덕수;이정후
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.79-99
    • /
    • 2003
  • Muscovite and biotite from 52 metasediments and 5 granites in the Hwasan area, the southwest of the Okcheon metamorphic belt and the Miwon-Jeungpyeong area, central Okcheon metamorphic belt were dated by the K-Ar and $^{40}$ Ar/$^{39}$ Ar methods. Muscovite and biotite ages from metapelitic and psammitic rocks (metasediments) of the Boeun and Pibanryeong units in the Hwasan area are concentrated in the mid-Jurassic (149-180 Ma). K-Ar and $^{40}$ Ar/$^{39}$ Ar ages for metapelitic and psammitic rocks of the Boeun and Pibanryeong units in the Miwon-Jeungpyeong area show complicated age distribution. Muscovite and biotite ages are classified by three groups, 142-194 Ma, 216-234 Ma, and 241-277 Ma. Younger (Cretaceous) ages occur only in metasediments close to Cretaceous granitic rocks in the southeastern region and the older ages of 216-277 Ma are restricted to the middle Part of the Jeungpyeong area. Most ages in the other area of the central Okcheon metamorphic belt fall between 142-194 Ma (Jurassic). K-Ar and $^{40}$ Ar/$^{39}$ Ar ages for granite from the northern part in the both the southwest and central Okcheon metamorphic belt also gave middle Jurassic ages (156-168 Ma). The similar ages from both metasediments and granites in the study areas indicate simultaneous cooling of both rocks to 300-350$^{\circ}C$ during the middle Jurassic. The state of graphitization of carbonaceous material of all metasediments in the study areas Indicates fully ordered graphite falling within a small range, from 3.353 to 3.359 ${\AA}$, which indicate amphibolite facies regional metamorphism. In the southern sector of the Boeun unit from the Hwasan area, metamorphic grade indicated by mineral paragenesis during regional intermediate-P/T metamorphism is greenschist facies. Whereas, the $d_{002}$ values for carbonaceous materials in the same sector show fully ordered graphite (ca. 500$^{\circ}C$) indicating amphibolite facies. This result with the concentration of mica ages of metasediments into the middle Jurassic, the presence of low-P/T thermal metamorphic zone (>500$^{\circ}C$) in the metasediments close to the Jurassic granite and the regional intrusion of Jurassic granites and their middle Jurassic intrusion and cooling ages may indicate the low-P/T regional thermal event during the early(\ulcorner)-middle Jurassic after main intermediate-P/T metamorphism which formed main mineral assemblage regionally in the study area. The regional thermal event failed, however, to reset the mineral assemblage of regional intermediate-P/T metamorphism except for narrow aureole (1-2 km) around Jurassic granite because e duration of thermal effect was relatively short by repid cooling of the Jurassic granite. In the middle part of the Jeungpyeong area, central Ogcheon metamorphic belt, muscovite and biotite K-Ar ages from 5 samples are 263-277 Ma and 241-249 Ma, respectively. An intermediate-P/T metamorphism is currently accepted to have occurred between 280 and 300 Ma. Therefore, the muscovite and biotite ages can be interpreted as cooling ages after Ml metamorphism indicating rapid cooling to ca 350$^{\circ}C$ between 280-300 Ma and 263-271 Ma, and biotite ages indicate slower cooling to ca. 300$^{\circ}C$ between 263-277 Ma and 241-249 Ma. However, more detail study is needed to confirm why the Permian to Triassic ages occur only in the middle Part of the Jeungpyeong area.a.

The Feature of Indosinian Movement and its comparison with Yanshanian Movement in the Yanshanian area, China (중국 연산지역의 인지운동(印支運動)의 특징 및 연산운동(燕山運動)과의 비교)

  • 조성윤;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.45-51
    • /
    • 1997
  • Tectonic movements in the Mesozoic were significant events to structural evolution in East China, so far as to West Pacific area. Typical Mesozoic structures were formed and outcropped in Yanshanian mountain area in which Yanshanian movement was named. It is generally considered that the most of outcropping structures in this area were formed in Yanshanian movement. But general studies indicated recently that more than half of the folds were formed in Yanshanian movement. But general studies indicated recently that more than half of the folds were formed and most of fault were in great reverse activity during Indosinian movement in Late-Triassic epoch. The tectonic dynamics setting of Indosinian move ment is a N-S compressive stress system originated by northward movement of Sino-Korean massif and its collison with Xingan-Mongolia fold zone. A series of closed folds (nearly E-W axial trace)and some overturned folds were formed in Indosinian movement and incoaxially superposed by Yanshanian deformation, Faulting characteristcs in the area were thrust faulting caused by compressive stress in Indosinian movement, some of which appear to be positive structural inversion, and oblique-thrust caused by compressive-shear in Yanshanian movement.

  • PDF