• Title/Summary/Keyword: 삼중수소 농도

Search Result 45, Processing Time 0.021 seconds

Environmental Isotope - Aided studies on Sea Water contamination of Eastern Coastal Aquifer in Cheju Island (환경동위원소(環境同位元素)를 이용(利用)한 제주동부지역(濟州東部地域) 대수층(帶水層)의 해수오염(海水汚染)에 관(關)한 연구(硏究))

  • Ahn, Jong-Sung;Kim, Sun-Joon;U, Zang-Kual;Song, Sung-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.1
    • /
    • pp.26-40
    • /
    • 1992
  • Cheju Island formed by Quarternary volcanism provides highly permeable hydrogeological environment. To meet the increasing demand of water in the island, many groundwater wells have been developed. The environmental isotopes(oxygen-18, deuterium, tritium) and chemical analysis of water samples from the eastern part of the island were carried out to ascertain whether groundwater in the eastern part of the island was contaminated by sea water. The result of tritium analysis indicated fast infiltration of meteoric water into underground and rapid mixing process between rain water and groundwater. The results of oxygen-18 and deuterium analysis demonstrated that most of the wells in the eastern part of the island were influenced by sea water intrusion. Chemical analysis of water samples revealed that most groundwater in study area were classified into Na-Cl type and showed high chloride/bicarbonate ratios. Sea water intrusion in the northeastern part of the island has proceeded at least 3 km within the coastaline, and in the south eastern part about 700m.

  • PDF

Review on the Management for Radioactive Effluent and Methodology for Setting of Derived Release Limits at Pressurized Heavy Water Reactors in Korea (중수로원전 방사성유출물 관리와 유도배출한계 설정방법에 대한 고찰)

  • Kim, Hee-Geun;Kong, Tae-Young;Jeong, Woo-Tae;Kim, Seok-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.4
    • /
    • pp.172-177
    • /
    • 2010
  • The radioactive effluents from pressurized heavy water reactors (PHWRs) are relatively larger than those from pressurized water reactors (PWRs). Futhermore, radioactive effluents from PHWRs are released continuously. Thus, the discharge of radioactive effluents is strictly controlled. To do this, radiation detectors are installed at stacks of reactor buildings to monitor the concentration of radioactive effluents in real-time. Derived release limits (DRLs) of annual discharge are also set up for each radionuclide and effluents are rigidly controlled not to exceed those limits. In this paper, the discharge process of radioactive effluents, the standard for establishment of DRL and its methodology, and currents status for PHWRs were reviewed.

Synthetic Characteristics of Porous Polymeric Catalyst Support (다공성 고분자촉매 담체의 제조 특성)

  • Kang, Hee-Suk;Lee, Han-Soo;Chung, Hongsuk;Ahn, Do-Hee;Son, Soon-Hwan;Chung, Yang Geun;Song, Myung-Jae
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.715-725
    • /
    • 1996
  • This study represents the synthetic characteristics of styrene-DVB copolymer which is used as a catalyst support for the removal of tritium in CANDU. To evaluate the effect of solvent on the styrene-DVB polymeric support, the solvating power dependent on various kinds and composition of solvents was calculated. In order to synthesize the macroreticular type polymer bead, the following conditions are needed; solvating power should be higher than 1 for 20% of crosslinkage and higher than 3 for 40% of crosslinkage. Stabilization of organic monomers at about $40^{\circ}C$ for more than 2 hours is prerequisite. Removal of solvent prior to drying is preferred for the post-treatment of the bead. The polymer particle size was increased by lowering concentration of surfactant and stirring speed.

  • PDF

Analysis of Minimum Detectable Activity Concentration of Water Samples and Evaluation of Effective Dose (물 시료의 최소검출가능 농도 분석과 유효선량 평가)

  • Jang, Eun-sung;Kim, Yang-su;Lee, Sun-young;Kim, Jung-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.857-862
    • /
    • 2020
  • In March 2011, a tsunami off Japan caused radioactive material that had seeped into the sea from the Fukushima nuclear accident to flow to the Pacific Ocean, causing pollution to sea life. For a comparative evaluation with the area surrounding the site of a nuclear power plant by the release of radioactive materials, an area 20 to 30 km away from the emergency protection plan area was selected as a comparative point considering weather conditions, population distribution, etc. In addition, the government intends to analyze the minimum detection radiation received by residents around the nuclear power plant and evaluate the effective dose. Analysis of tritium radiation from water samples showed that most of the samples were not detected and that 0.0014 % to 0.777 % of the annual legal standard of 1 mSv for the general public had little effect on the human body. Therefore, the measurement and analysis of water samples around the nuclear power plant site is expected to help relieve anxiety, such as exposure to the general public and neighboring residents due to radiation release.

Geochemistry of Geothermal Waters in Korea: Environmental Isotope and Hydrochemical Characteristics I. Bugok Area (한반도 지열수의 지화학적 연구: 환경동위원소 및 수문화학적 특성 I. 부곡 지역)

  • Yun, Seong-Taek;Koh, Yong-Kwon;Kim, Chun-Soo;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.185-199
    • /
    • 1998
  • Hydrogeochemical and environmental isotope studies were undertaken for various kinds of water samples collected in 1995-1996 from the Bugok geothermal area. Physicochemical data indicate the occurrence of three distinct groups of natural water: Group I ($Na-S0_4$ type water with high temperatures up to $77^{\circ}C$, occurring from the central part of the geothermal area), Group II (warm $Na-HCO_{3}-SO_{4}$ type water, occurring from peripheral sites), Group III ($Ca-HCO_3$ type water, occurring as surface waters and/or shallow cold groundwaters). The Group I waters are further divided into two SUbtypes: Subgroup Ia and Subgroup lb. The general order of increasing degrees of hydrogeochemical evolution (due to the degrees of water-rock interaction) is: Group III$\rightarrow$Group II$\rightarrow$Group I. The Group II and III waters show smaller degrees of interaction with rocks (largely calcite and Na-plagioclase), whereas the Group I waters record the stronger interaction with plagioclase, K-feldspar, mica, chlorite and pyrite. The concentration and sulfur isotope composition of dissolved sulfate appear as a key parameter to understand the origin and evolution of geothermal waters. The sulfate was derived not only from oxidation of sedimentary pyrites in surrounding rocks (especially for the Subgroup Ib waters) but also from magmatic hydrothermal pyrites occurring in restricted fracture channels which extend down to a deep geothermal reservoir (typically for the Subgroup Ia waters). It is shown that the applicability of alkaliion geothermometer calculations for these waters is hampered by several processes (especially the mixing with Mg-rich near-surface waters) that modify the chemical composition. However, the multi-component mineral/water equilibria calculation and available fluid inclusion data indicate that geothermal waters of the Bugok area reach temperatures around $125^{\circ}C$ at deep geothermal reservoir (possibly a cooling pluton). Environmental isotope data (oxygen-18, deuterium and tritium) indicate the origin of all groups of waters from diverse meteoric waters. The Subgroup Ia waters are typically lower in O-H isotope values and tritium content, indicating their derivation from distinct meteoric waters. Combined with tritium isotope data, the Subgroup Ia waters likely represent the older (at least 45 years old) meteoric waters circuated down to the deep geothermal reservoir and record the lesser degrees of mixing with near-surface waters. We propose a model for the genesis and evolution of sulfate-rich geothermal waters.

  • PDF