• Title/Summary/Keyword: 삼중수소

Search Result 237, Processing Time 0.026 seconds

Hydrogen Isotopes Accountancy and Storage Technology (수소동위원소 계량·공급기술)

  • Koo, Dae-Seo;Chung, Hong-Suk;Chung, Dong-You;Lee, Jung-Min;Yun, Sei-Hun;Cho, Seung-Yon;Jung, Ki-Jung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2012
  • Hydrogen isotopes accountancy and storage are important functions in a nuclear fusion fuel cycle. The hydrogen isotopes are safely stored in metal hydride beds. The tritium inventory of the bed is determined from the decay heat of tritium. The decay heat is measured by circulating helium through the metal hydride bed and measuring the resultant temperature increase of the helium flow. We are reporting our preliminary experimental results on the hydrogen isotopes accountancy and storage performance in a metal hydride bed.

수소 동위원소 교환반응을 위한 소수성 고분자 촉매집합체 제조 특성 연구

  • 이성호;안도희;이한수;김용성;정흥석
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.127-132
    • /
    • 1996
  • 촉매탑에서 수소와 물사이의 수소 동위원소 교환 반응에 의한 중수 분리 및 삼중수소 제거를 위한 소수성 촉매집합체 제조기술을 개발하기 위하여 소수성 촉매집합체 제조 특성에 대하여 연구하였다. 본 연구에서 먼저 일반적인 함침법 및 colloidal method 의하여 각각 백금을 activated carbon에 담지시켜 Pt/Carbon 촉매를 제조하고, 수소 흡착법에 의하여 촉매의 백금 분산도를 비교 분석하였다. 제조된 Pt/Carbon 촉매를 Wanke등의 방법에 따라 소수성 teflon 수지를 binding agent로 사용하여 ceramic bell-saddle 및 육면체형 packing등의 충전물 표면에 coating시켜 촉매 집합체를 제조하고 소결 온도, 충전물의 형태 및 표면 부위에 따른 surface coating 특성에 대하여 연구하였다.

  • PDF

고분자담체(SDBC)의 백금흡착평형

  • 백승우;안도희;이한수;강희석;이성호;김광락;정흥석
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.157-161
    • /
    • 1996
  • 중수형 발전소에서 삼중수소 제거나 중수생산과 관련된 수소동위원소 교환반응용으로 이용되는 소수성 고분자촉매의 담체인 스티렌-디비닐벤젠 공중합체의 촉매금속인 백금의 흡착 특성을 관찰하였다. 백금담지실험을 위해 고분자담체를 제조하였으며, 항상 일정한 표면적과 기공분포를 얻을 수 있었다. 백금담지실험결과 10시간 정도가 지나면 흡착평형에 도달함을 알 수 있었으며, 흡착평형실험 결과는 Langmuir model을 잘 따르고 있음을 알 수 있었다.

  • PDF

Geochemical characteristics of a LILW repository I. Groundwater (중.저준위 방사성 폐기물 처분부지의 지구화학 특성 I. 지하수)

  • Choi, Byoung-Young;Kim, Geon-Young;Koh, Yong-Kwon;Shin, Seon-Ho;Yoo, Si-Won;Kim, Doo-Haeng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.297-306
    • /
    • 2008
  • This study was carried out to identify the characteristics of hydrochemistry controlling groundwater chemical condition in a repository site of Gyeongju. For this study, 12 bore holes of all monitoring bore holes in the study area were selected and total 46 groundwater samples were collected with depth. In addition, 3 surfacewater samples and 1 seawater sample were collected. For water samples, cations and anions were analyzed. The environmental isotopes(${\delta}^{18}O-{\delta}D$, Tritium, ${\delta}^{13}C,\;{\cdot}{\delta}^{34}S$) were also analyzed to trace the origin of water and solutes. The result of ${\delta}^{18}O\;and\;{\delta}D$ analysis showed that surface water and groundwater were originated from precipitation. Tritium concentrations of groundwater decreased with depth but high concentrations of tritium indicated that groundwater was recharged recently. The results of ion and correlation analysis showed that groundwater types of the study area were represented by Ca-Na-$HCO_3$ and Na-Cl-$SO_4$, which was caused by sea spray and water-rock interaction. Especially, high ratio of Na content in groundwater resulted from ion exchange. For redox condition of groundwater, the values of DO and Eh decreased with depth, which indicated that reducing condition was formed in deeper groundwater. In addtion, high concentration of Fe and Mn showed that redox condition of groundwater was controlled by the reduction of Fe and Mn oxides.

  • PDF

Evaluations of Hydrogen Embrittlement Behaviours on Dissimilar Welding Part of SDS Bottles (I) (삼중수소 저장용기 이종용접부의 수소취화 거동 평가 (I))

  • Cho, Kyoungwon;Choi, Jaeha;Jang, Minhyuk;Lee, Youngsang;Hong, Taewhan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.114-119
    • /
    • 2015
  • Nowdays, fossil fuels have been used as an important resource in development of industry. But it is limited and caused climate change such as pollution and global warming. So nuclear fusion research is being issued with tritium to develop eco-friendly and sustainable energy. Republic of Korea is in charge of Storage and Delivery System (SDS) in the International Thermonuclear Experimental Reactor (ITER), weld present in the SDS bottles are easily exposed to the hydrogen embrittlement of special characteristics of the hydrogen in hydrogen atmosphere, When the hydrogen embrittlement is rapidly progresses, the cracking is generated in the weld zone. Due to this cracking, the risk of leakage of tritium into the atmosphere occurs. In this study, hydrogen heat treatment was processed through the Pressure-Composition-Temperature (PCT) device according to the time variation. Also mechanical properties such as rupture strength test, three point bend test and hardness test in accordance with the respective time have been conducted and the fracture was observed by scanning electron microscopy(SEM) after the mechanical properties evaluation.

Hydrogen Brittleness on Welding Part for SDS Bottles (삼중수소 저장용기 이종 접합부의 수소 취성)

  • Kim, Raymund K.I.;Jung, Seok;Kang, Hyungoo;Chang, Minho;Yun, Seihun;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.121-127
    • /
    • 2013
  • Tritium was attracted with high energy source in neutron fusion energy systems. A number of research was performed in tritium storage materials. The Korea was raised storage and delivery systems (SDS) of international thermonuclear experimental reactor (ITER) research. However, bottles of SDS would be important because of stability. The bottles have a welding zone, this zone will be vulnerable to hydrogen embrittlement. This zone have a high thermodynamic energy and heat deterioration. Therefore bottles were studied about hydrogen embrittlement to retain stability. The heat treatment of hydrogen was carried under pressure-composition-temperature (PCT) apparatus because of checking at real time. And then, mechanical properties were evaluated by tensile test and hardness test. In results of this study, hydrogen atmosphere condition is very important by tensile test and kinetics test. The samples were evaluated, that is more weak hydrogen pressure, increasing temperature and time. This results could be useful in SDS bottle designs.

소수성 촉매를 이용한 기상촉매교환공정의 해석

  • 안도희;김광락;이성호;김정국;이한수;정흥석;손순환;김광신;정양근
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.379-383
    • /
    • 1997
  • 삼중수소화 중수로부터 삼중수소를 가스상의 중수소로 이동시키기 위한 촉매교환 공정에는 친수성 촉매를 사용한 기상촉매교환공정과 소수성 촉매를 사용한 액상촉매교환공정이 있다. 소수성 촉매를 이용한 기상촉매교환공정은 기존의 두 가지 공정과는 설계 개념이 달라서 방사선 안전성과 설비의 규모면에서 독특한 특성을 가질 수 있으므로 촉매교환공정의 개발을 위한 첫 단계로 공정해석을 시도하였다. 소수성 촉매를 사용한 기상촉매교환공정은 액상촉매교환공정과 유사하게 1atm, 80~10$0^{\circ}C$에서 운전이 가능하므로 2.7atm, 20$0^{\circ}C$에서 운전되는 기존의 그것에 비해 방사선 안전성이 뛰어나나, 촉매층의 단수가 35%정도 증가됨을 알 수 있었다. 반면에 액상촉매교환공정에 필요한 촉매층의 단수보다는 훨씬 적음을 알 수 있었다.

  • PDF

A Numerical Investigation of Hydrogen Absorption Reaction Based on ZrCo for Tritium Storage (I) (삼중수소 저장을 위한 ZrCo 저장재에서의 수소 흡장에 대한 수치해석적 연구 (I))

  • Yoo, Haneul;Yun, Seihun;Chang, Minho;Kang, Hyungoo;Ju, Hyunchul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.448-454
    • /
    • 2012
  • In this paper, a three-dimensional hydrogen absorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. The present model reasonably captures the bed temperature evolution behavior and the 99% hydrogen charging time. The equilibrium pressure expression for hydrogen absorption on ZrCo is derived as a function of temperature and the H/M atomic ratio based on the pressure-composition isotherm data given by Konishi et al. In addition, this present model provides multi-dimensional contours such as temperature and H/M atomic ratio in the thin doublelayered annulus metal hydride region. This numerical study provides fundamental understanding during hydrogen absorption process and indicates that efficient design of the metal hydride bed is critical to achieve rapid hydrogen charging performance. The present three-dimensional hydrogen absorption model is a useful tool for the optimization of bed design and operating conditions.