• Title/Summary/Keyword: 삼산화텅스텐

Search Result 4, Processing Time 0.019 seconds

Performance of Pt/$WO_3$ and Pt-$WO_3$/C electrode systems for direct methanol fuel cell (직접메탄올 연료전지용 백금/삼산화텅스텐 및 백금-삼산화텅스턴/탄소 전극계의 성능 평가)

  • Lee, C.H.;Lee, C.W.;Jung, D.W.;Shin, D.R.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1358-1360
    • /
    • 1997
  • In this paper, the performance of Pt/$WO_3$ and Pt-$WO_3$ electrodes was studied for the direct methanol fuel cell. The characteristics of Pt/$WO_3$ electrode which was prepared by using electrodeposition method was tested with half-cell experiment. The characteristics of Pt-$WO_3$/C electrode which was Prepared by using freeze-drying method was tested with a single cell experiment. The performance of DMFC single cell which was prepared by Pt-$WO_3/C$ and Pt/C showed a current density of $32mA/cm^2$ at $110^{\circ}C$ & 0.3V(0.5mg Pt/$cm^2$).

  • PDF

Study on Characteristics of coated fabric using nano-particle (나노물질이 코팅된 직물의 기능성 향상에 관한 연구)

  • Kim, Jong-Won;Yoon, Seok-Han;Yeum, Jeong-Hyun;Bae, Eun-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.55-55
    • /
    • 2011
  • 국내의 등산용 아웃도어 제품의 경우, 기능성인 투습도와 내수압만을 증대시키려는 연구가 주류를 이루고 있었다. 하지만, 실제 등산용 아웃도어의 경우 산악지형인 고지대에서 사용시간이 많으므로, 이에 따른 장시간의 직접적인 태양광 노출로 인한 인체에 치명적인 영향을 야기시키고 있지만, 인체 보호용 헬스케어 아웃도어 제품에 대한 연구는 미흡한 실정이다. 태양광은 자외선 2.5%, 가시광선 51.5%, 적외선 46.0%의 광량 비율을 가지고 있으며, 이 중 자외선은 광량은 적지만 에너지적으로 높아 유기물 분해 및 열화를 일으킨다. 이러한 자외선을 차단하기위해 아웃도어 의류에서는 유무기하이브리드 소재를 표면에 코팅시키게 되며, 기능성 코팅액내에 함유되어 있는 나노분말의 경우 이산화티타늄($TiO_2$), 산화세륨(CeO), 산화아연(ZnO), 삼산화텅스텐($WO_3$), 산화마그네슘(MgO) 등이 주로 사용되어 진다. 본 연구에서는 자외선 흡수소재로 나노산화아연분말을 이용하여, 그 입도 및 코팅용 희석 용매내의 분산성을 확인하고, 함유량을 달리한 코팅 수지를 제조하여, 코팅시편 제조 후 그 특성을 비교/분석하여 자외선 차단 효과를 확인하고자 한다.

  • PDF

Oxidative Desulfurization of Marine Diesel Using WOx/SBA-15 Catalyst and Hydrogen Peroxide (WOx/SBA-15 촉매와 과산화수소를 이용한 선박용 경유의 산화 탈황 연구)

  • Oh, Hyeonwoo;Kim, Ji Man;Huh, Kwang-Sun;Woo, Hee Chul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.567-573
    • /
    • 2017
  • In this work, tungsten oxide ($WO_x$) supported on SBA-15 (mesoporous silica) were prepared and applied for oxidative desulfurization of sulfur compounds in marine diesel containing about 230 ppmw of sulfur concentration. Prepared catalysts were examined by two steps; at first step, oxidation reaction carried out with hydrogen peroxide as oxidant and then the oxidized sulfur compounds were extracted by acetonitrile as solvent. Catalysts were characterized by using X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy and $N_2$ adsorption-desorption isotherms. Tungsten oxide exists as monoclinic crystal system on SBA-15 and over about 10 wt% of the $WO_x$ loading took the form of multi-layers on SBA-15. The 13 wt% $WO_x$/SBA-15 catalyst exhibite highest activity, achieving about 76.3% sulfur removal in the reaction conditions, such as catalyst amount of 0.1 g, reaction temperature at $90^{\circ}C$, reaction time for 3 h and O/S molar ratio of 10. One time oxidation reaction is enough oxidize the sulfur compounds in marine diesel completely. The repetition experiment of extraction process indicated that sulfur removal could reach 94.4% after 5 times.

Investigation of Photocatalytic Activity with a Metal Doped TiO2 Nanotubular Electrode for Hydrogen Production (금속담지 된 수소제조용 TiO2 나노튜브 전극의 광활성 연구)

  • Lee, Jae-Min;Lee, Chang-Ha;Yoon, Jae-Kyung;Joo, Hyun-Ku
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.656-662
    • /
    • 2011
  • The purpose of this study was to correlate between photoelectrochemcial hydrogen production rate and electron transfer with various types of metal doped $TiO_2$ nanotubes as photoanodes. In order to fabricate light sensitized photoanode, CdS, $WO_3$, and Pt were doped by electrodeposition method. As the results of experiments, the electron transfer was favorable from higher position to lower position of conduction band (CB). In consequence, the higher hydrogen production rate was as follows, CdS/$TiO_2$ (100 $umol/hr-cm^2$) > $WO_3/TiO_2$ (20 $umol/hr-cm^2$) > Pt/$TiO_2$ (10 $umol/hr-cm^2$). The surface characterizations exhibited that crystal structure, morphological and electrical properties of various metal depoed $TiO_2$ nanotubes by the results of SEM, TEM, XPS, and photocurrent measurements.