• Title/Summary/Keyword: 삼변측량

Search Result 64, Processing Time 0.021 seconds

Location Estimation Algorithm Based on AOA Using a RSSI Difference in Indoor Environment (실내 환경에서 RSSI 차이를 이용한 AOA 기반 위치 추정 알고리즘)

  • Jung, Young-Jin;Jeon, Min-Ho;Ahn, Jeong-Kil;Lee, Jung-Hoon;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.558-563
    • /
    • 2015
  • There have recently been various services that use indoor location estimation technologies. Representative methods of location estimation include fingerprinting and triangulation, but they lack accuracy. Various kinds of research which apply existing location estimation methods like AOA, TOA, and TDOA are being done to solve this problem. In this paper, we study the location estimation algorithm based on AOA using a RSSI difference in indoor environments. We assume that there is a single AP with four antennas, and estimate the angle of arrival based on the RSSI value to apply the AOA algorithm. To compensate for RSSI, we use a recursive averaging filter, and use the corrected RSSI and the Pythagorean theorem to estimate the angle of arrival. The results of the experiment, show an error of 18% because of the radiation pattern of the four non-directional antennas arranged at narrow intervals.

A Study on a 3-Dimensional Positioning System over Indoor Wireless Environments (실내 무선 환경에서 3차원 위치 추적 시스템에 관한 연구)

  • Kang, Byeong-Gwon;Choi, Sung-Ja;Kim, Gui-Jung;Park, Yong-Seo
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.273-279
    • /
    • 2014
  • In this paper, we propose a novel algorithm for three dimensional positioning system and implement a system over indoor wireless channel. A commercial modules are used for mobile and fixed nodes which are product of German company Nanotron Co. This module adopts chirp spread spreading scheme as modulation method to improve the ranging resolution and the module satisfies the IEEE standard 802.15.4a. The distance computation is based on received signal strength(RSS) levels and trilateration method. A testbed was set up to measure and compare the positioning estimation error of the proposed algorithm. The experiments results showed that the accuracy of location estimation was sufficiently good as much as 1m distance error in a wireless environment in an office building.

Simultaneous Estimation of Landmark Location and Robot Pose Using Particle Filter Method (파티클 필터 방법을 이용한 특징점과 로봇 위치의 동시 추정)

  • Kim, Tae-Gyun;Ko, Nak-Yong;Noh, Sung-Woo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.353-360
    • /
    • 2012
  • This paper describes a SLAM method which estimates landmark locations and robot pose simultaneously. The particle filter can deal with nonlinearity of robot motion as well as the non Gaussian property of robot motion uncertainty and sensor error. The state to be estimated includes the locations of landmarks in addition to the robot pose. In the experiment, four beacons which transmit ultrasonic signal are used as landmarks. The robot receives the ultrasonic signals from the beacons and detects the distance to them. The method uses rang scanning sensor to build geometric feature of the environment. Since robot location and heading are estimated by the particle filter, the scanned range data can be converted to the geometric map. The performance of the method is compared with that of the deadreckoning and trilateration.

A study on 3-D indoor localization based on visible-light communication considering the inclination and azimuth of the receiver (수신기의 기울기 및 방위를 고려한 가시광 통신기반 3차원 실내 위치인식에 대한 연구)

  • Kim, Won-Yeol;Zin, Hyeon-Cheol;Kim, Jong-Chan;Noh, Duck-Soo;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.647-654
    • /
    • 2016
  • Indoor localization based on visible-light communication using the received signal strength intensity (RSSI) has been widely studied because of its high accuracy compared with other wireless localization methods. However, because the RSSI can vary according to the inclination and azimuth of the receiver, a large error can occur, even at the same position. In this paper, we propose a visible-light communication-based 3-D indoor positioning algorithm using the Gauss-Newton technique in order to reduce the errors caused by the change in the inclination of the receiver. The proposed system reduces the amount of computations by selecting the initial position of the receiver through the linear least-squares method (LSM), which is applied to the RSSIs, and improves the position accuracy by applying the Gauss-Newton technique to the 3-D nonlinear model that contains the RSSIs acquired by the changes in the azimuth and inclination of the receiver. In order to verify the validity of the proposed algorithm in an indoor space with dimensions of $6{\times}6{\times}3m$ where 16 LED lights are installed, we compare and analyze the errors of the conventional linear LSM-based trilateration technique and the proposed algorithm according to the changes in the inclination and azimuth of the receiver. The experimental results show that the location accuracy of the proposed algorithm is improved by 82.5% compared to the conventional LSM-based trilateration technique.

A Study on Development of Indoor Object Tracking System Using N-to-N Broadcasting System (N-to-N 브로드캐스팅 시스템을 활용한 실내 객체 위치추적 시스템 개발에 관한 연구)

  • Song, In seo;Choi, Min seok;Han, Hyun jeong;Jeong, Hyeon gi;Park, Tae hyeon;Joeng, Sang won;Kwon, Jang woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.192-207
    • /
    • 2020
  • In industrial fields like big factories, efficient management of resources is critical in terms of time and expense. So, inefficient management of resources leads to additional costs. Nevertheless, in many cases, there is no proper system to manage resources. This study proposes a system to manage and track large-scale resources efficiently. We attached Bluetooth 5.0-based beacons to our target resources to track them in real time, and by saving their transportation data we can understand flows of resources. Also, we applied a diagonal survey method to estimate the location of beacons so we are able to build an efficient and accurate system. As a result, We achieve 47% more accurate results than traditional trilateration method.

Distribution Method of BLE Fingerprinting for Large Scale Indoor Envirement (광범위 분산처리 기반 BLE 핑거프린팅 실내 측위 기법)

  • Lee, Dohee;Son, Bong-Ki;Lee, Jaeho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.373-378
    • /
    • 2016
  • Recently, IPS(Indoor Positioning System) Technology has been progressing study and research, It has been studied in the fingerprinting and trilateration continuously. however because Fingerprinting and Trilateration Technology use AP(Access Point) for Positioning Calculation, Fingerprinting and Trilateration are not never had a credit positioning accuracy by using unstable RSSI in large scale. in this paper, to improve the problem about precise positioning in wide area, we introduced a concept of Sector including Cell. Sectors are not involved in each other and only fingerprinting calculation is proceed in a sector. we suggest this fingerprinting system considering efficiency and accuracy and compared to conventional fingerprinting, we demonstrated our system efficiency by mathematical techniques.

Development of a Real-Time Position Tracking System for a Manufacturing Process Based on a UWB Sensor Using a Kalman Filter (칼만필터를 적용한 UWB 센서기반 제조업 조립공정작업의 실시간 위치추적 시스템 개발)

  • Jeong, Seung-Hyun;Choi, Deuk-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.627-633
    • /
    • 2020
  • Assembly process data can be gathered in real time in a manufacturing execution system (MES) server using proximity sensors, barcodes, RFID, ZigBee, Bluetooth, wireless sensor networks, etc. Although this is suitable for identifying process flow and checking production progress, it is difficult to trace the location of individual workers in real time for missing work or trajectories within the work area. To overcome this, the location and trajectory of the working tool can be analyzed in real time through a position tracking system of an operator's working tool. It can instruct the operator to perform a consistent working process. Productivity and quality improvement can be achieved by an alarming or blocking operator with possible assembly defects during the assembly process in real time. To this end, we developed a real-time tool position-tracking sensor system based on Ultra Wide Band (UWB) trilateration using a Kalman filter to eliminate mechanical vibration and radio communication noise.

Development of the Process of Coordinate Transformation of Local Datum Cadastral Map to the World Geodetic System - Using Adjusted Coordinate - (지적도면의 세계측지계 좌표변환 프로세스에 대한 연구 - 조정좌표의 활용을 통해서 -)

  • Yang, Chul Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.spc4_2
    • /
    • pp.401-412
    • /
    • 2014
  • This study is purposed on showing an effective process for coordinate transformation of cadastral maps, based on the local datum, in the World Geodetic System (WGS) for Cadastral Reform Project (CRP). The process follows three steps: coordinate adjustment, datum transformation and distortion modeling. The first procedure is that point coordinates on local datum has to be adjusted by those GPS observed point-to-point distances, using trilateration. Secondly, the adjusted coordinates need to be transformed to WGS by applying the Affine model, while the verification of the methodology is implemented under numerical experiments. To conduct this procedure, 195 points in the same coordinate origins in Seoul and 61 points in several different origins in Incheon are used in the estimation. As a result, there are less than 2cm coordinate differences between transformed coordinates and measured ones at everywhere. Also, it is remarkable that the transformation does not depend on either of the particular common points or the sizes of computed region. Therefore, this suggested methodology is expected to easily provide identifications and corrections for points-deviations for improved quality of the cadastral map by distortion modeling through CRP.

Location Based Load Balancing Method for Cluster Routing in Wireless Sensor Networks (무선 센서 네트워크의 클러스터 라우팅에서 위치기반 부하 균등화 기법)

  • Yoo, Woo Sung;Kang, Sang Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.942-949
    • /
    • 2016
  • Efficient routing protocols designed for Wireless Sensor Networks (WSN) can be extended and applied to Internet of Things (IoT) data routing, as IoT can be considered to be an extension from WSN. When the size of the data in IoT is often bigger than in conventional WSNs, existing cluster routing protocol such as LEACH may cause high data loss rate due to its incomplete load balancing. We present an enhanced LEACH-based protocol which can minimize the data loss which is an important performance measure in IoT. In our proposed protocol, the base station estimates the location of nodes by the trilateration technique to make sure optimal number of cluster heads and members in a deterministic manner. We evaluate our proposed protocol via computer simulations in terms of data loss rate and average network lifetime.

Localization Algorithm for Moving Objects Based on Maximum Measurement Value in WPAN (WPAN에서 최대 측정거리 값을 이용한 이동객체 위치추정 보정 알고리즘)

  • Choi, Chang Yong;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.5
    • /
    • pp.407-412
    • /
    • 2014
  • Concerns and demands for the Location Based Services (LBS) using Global Positioning System (GPS) and Wi-Fi are largely increased in the world in the present. In some experimental results, it was noted that many errors are frequently occurred when the distances between an anchor node and a mobile node acre measured in indoor localization environment of Wireless Personal Area Network (WPAN). In this paper, localization compensation algorithm based on maximum measurement value ($LCA_{MMV}$) for moving objects in WPAN is proposed, and the performance of the algorithm is analyzed by experiments on three scenarios for movement of mobile nodes. From the experiments, it was confirmed that the average localization accuracy of suggested algorithm was more increased than Symmetric Double-Sided Two-Way Ranging (SDS-TWR) and triangulation as average 40.9cm, 77.6cm and 6.3cm, respectively on scenario 1-3.