• Title/Summary/Keyword: 살포 농도

Search Result 427, Processing Time 0.024 seconds

Food Waste Composting by Using an Inoculum-Mixture Containing New Facultative Anaerobic Bacteria (신규 통성혐기성 세균으로 제조한 발효흙에 의한 음식물 쓰레기의 퇴비화)

  • Hwang, Kyo-Yeol;Lee, Jae-Yeon;Kim, Keun;Sung, Su-Il;Han, Sung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.65-72
    • /
    • 2001
  • Four newly isolated bacteria from soil were used to manufacture microbial inoculum to compost food waste. The bacteria, GM103, V25, V31, and V35, were identified as Bacillus licheniformis, B. subtilis, B. stearothermophilius, and B, subtilis, respectively. The bacterial strains were efficient to degrade protein and starch and also able to inhibit the growth of plant pathogenic fungus Rhizopus stronifer. The GM103 showed distinct capability in degrading starch, but grow only aerobically. The other three bacterial strains. V25, V31, and V35, could grow both aerobically as well as anaerobically, in 10%(w/v) salt, at $50^{\circ}C$, and had good viability and survival rate in soil. These characteristics of the bacterial strains are very adquate in Korean food composting containing high concentration of salt, especially at home. By mixing the 4 bacterial culture broth with molasses, beet pulp, zeolite, The bacterial inoculum for food waste composting-BIOTOP-CLEAN-was made. The performance of food waste composting by the BIOTOP-CLEAN was compared with that by control(not treated) and HS(other demestic company's inoculum product for food waste composting). The maximum temperature of the food waste during the composting with the BIOTOP-CLEAN was $50^{\circ}C$, while those of the control and HS were $30^{\circ}C$ and $35^{\circ}C$, respectively. The BIOTOP-CLEAN gave the good smell and showed dark brown color, while the control gave bad smell and HS gave less bad smell. These indicates that the food waste composting by the BIOTOP-CLEAN had been well accomplished. The culture broth of V25, V31, V35 were sparyed to the plants of tomato, chinese cabbage, raddish, red pepper every month and the spraying the culture broth to these plant significantly improved the production yield of the crops, due to the control effect of the bacterial strains against the plant pathogens.

  • PDF

Establishment of Pre-Harvest Residue Limits and Residue Characteristics of Penthiopyrad and Pyriofenone in Cucumber (Cucumis sativus L.) Under Greenhouse Condition (시설 내 오이(Cucumis sativus L.) Penthiopyrad 재배 중 및 Pyriofenone의 잔류특성과 생산단계 잔류허용기준 설정)

  • Leem, Su-Bin;Kim, Ji-Yoon;Hur, Kyung-Jin;Kim, Hee-Gon;Hur, Jang-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.43-49
    • /
    • 2017
  • BACKGROUND: Greenhouse crops are one of agricultural products consumed largely in Korea. Cucumber is a typical example as main vegetables of greenhouse crops. Thus, pesticide residue analysis is an important requirement to guarantee pesticide safety of cucumber. This work was aim to investigate the residues of penthiopyrad and pyriofenone in cucumber after harvest. METHODS AND RESULTS: Cucumber was subjected to treat with penthiopyrad and pyriofenone at a level of recommended dose 0, 1, 2, 3, 5, 7 and 10 days before harvest under greenhouse conditions. The samples were extracted with organic solvent by using a homogenizer and purified on solid phase cartridge column followed by LC-MS/MS analysis. The recovery levels of penthiopyrad and pyriofenoneranged from approximately 81 to 93% with the method limit of 0.005 mg/kg and coefficient of variation less than 10%. Penthiopyrad and pyriofenone were detected at a level less than maximum residue limit in cucumber at 10 days before. The half-lives of penthiopyrad and pyriofenone were determined to 2.4 ~ 2.6 days. CONCLUSION: Penthiopyrad and pyriofenone are suggested to use in cucumber 10 days before harvest to reach their levels less than maximum residue limit.

Effect of Silicate on Creeping Bentgrass Growth of Green at the Golf Course during Summer in Korea (규산염의 시비가 크리핑 벤트그래스의 여름철 생육에 미치는 영향)

  • Lee, Jae-Pil;Yoo, Tae-Young;Moon, Se-Jong;Ham, Suon-Kyu;Kim, Doo-Hwan
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.217-223
    • /
    • 2008
  • This study was conducted to figure out the effect of silicate as growth stimulator on growth of 'Pencrosss' creeping bentgrass. Creeping bentgrass(Agrostis palustris cv. 'Pencross') at the nursery of Sinwon Country Club was used. Silicate was applied at the concentration of 0, $200{\times}$, $500{\times}$, $1.000{\times}$. Polt size was 1 by 2 meter and there were three replications with completely randomized design(CRD). Creeping bentgrass growth was evaluated with visual turf grass quality, root length and No. of tiller density(ea/$cm^2$). Results of this study are as followings; 1. Average root length with silicate was $1.5{\sim}1.9cm$ longer than control. Especially, Root length of silicate was $7{\sim}8cm$ in summer. 2. Tiller density with silicate was $l8{\sim}22ea/cm^2$, $0.4{\sim}2.l$ less than control. But there was no significant difference. 3. Visual turfgrass quality with silicate was $5.0{\sim}8.3$, $0.3{\sim}1.5$ higher than control. But there was no significant difference. In conclusion, silicate might be grown as root growth stimulator of creeping bentgrass during summer in Korea. However, this study was conducted under one year. Accordingly, in-depth experiment should be done over several years.

Protective Effect of Iminoctadine tris(albesilate) and Kresoxim-methyl Fungicides to Citrus Postharvest Diseases caused by Penicillium spp. (저장 감귤의 부패에 관여하는 Penicillium spp.에 대한 Iminoctadine tris(albesilate)와 Kresoxym-methyl의 방제 효과)

  • Hyun, Jae-Wook;Lee, Seong-Chan;Ihm, Yang-Bin;Kim, Dong-Hwan;Ko, Sang-Wook;Kim, Kwang-Sik
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.2
    • /
    • pp.37-44
    • /
    • 2001
  • The biological effects of the iminoctadine tris (albesilate) and kresoxim-methyl for the protection of citrus postharvest diseases caused by penicillium spp. were assayed. In vitro tests, $EC_{50}$ values of iminoctadine tris(albesilate) were $0.01{\sim}0.02\;and\;0.01{\mu}g$ a.i./mL against mycelial growth of P. italicum and P. digitatum, respectively, but iminoctadine tris(albesilate) at $0.64{\mu}g$ a.i. /mL inhibited a little mycelial growth of unknown Penicillium sp. which produced another symptom different to blue and green mold caused by P. italicum and P. digitatum, respectively. And against germination and growth of germ tube of P. italicum and P. digitatum, $EC_{50}$ value of iminoctadine tris(albesilate) was $0.0013{\sim}0.0025{\mu}g$ a.i./mL. But spore germination of unknown Penicillium spp. was not nearly inhibited at $0.2{\mu}g$ a.i./mL. $EC_{50}$ values of kresoxim-methyl were $0.08{\sim}0.16$, 0.04 and $0.16{\mu}g$ a.i./mL against mycelial growth of P. italicum, P. digitatum and unknown Penicillium sp., respectively, and $0.04{\sim}0.08{\mu}g$ a.i./mL and $0.01{\sim}0.02{\mu}g$ a.i./mL against germination and growth of germ tube of P. italicum and unknown Penicillium sp., and P. digitatum, respectively. Iminoctadine tris(albesilate) and kresoxim-methyl were markedly effective to control the postharvest disease by 7 days spray prior to harvest. When the fruits were sprayed with iminoctadine-tris(albesilate) ($200{\mu}g$ a.i./mL) and kresoxim-methyl ($155{\mu}g$ a.i./mL) 7 days prior to harvest and subsequently stored for 90 days, the percentage of diseased fruit by Penicillium spp. was $3.6{\pm}1.8%$ in treatment of kresoxim-methyl and $5.9{\pm}1.8%$ in iminoctadine-tris(albesilate), respectively. On the other hand, tile percentage of diseased fruit was relatively high, $20.3{\pm}10.0%\;and\;19.5{\pm}9.6%$ in thiophanate-methyl ($700{\mu}g$ a.i./mL) and non-treatment, respectively. Maximum residue amount (ppm) among fruits (flesh and peel) assayed 0, 30, 60 and 90 days after storage was 0.45 and 0.10 ppm in treatment of kresoxim-methyl and iminoctadine, respectively.

  • PDF

A Study on the Development of a Microbial Insecticide -(With special emphasis on formulation)- (미생물(微生物) 살충제(殺蟲劑)의 개발(開發)에 관(關)한 연구(硏究) -(제제화(製劑化)를 중심(中心)으로)-)

  • Lee, Jae-Koo;Kim, Ki-Cheol;Kim, Do-Young
    • Applied Biological Chemistry
    • /
    • v.22 no.2
    • /
    • pp.123-134
    • /
    • 1979
  • For the purpose of developing a microbial insecticide utilizing Bacillus thuringiensis Berliner, research was done and the following results were obtained. 1) As the freeze-dried matter of the cocoon-cooked water discarded from the filature contains much crude protein(51.825%) and a lot of inorganic salts, it can make a good nutrition source for the culture cf B. thuringiensis Berliner. 2) Based on the suspensibility, formula F-5 turned out to be the most suitable for insecticidal use. Its composition includes 0.2 g of the cell-spore-crystal mixture, 25 g of 200-mesh kaolin, 2.5 g of New Kalgen-NX-150, and 2.5 g of glycerine admixed with 8 ml of distilled water and granulated in 80-mesh size. 3) All the components of F-5, F-6 and F-7 are identical except that the amounts of cell-spore-crystal mixture of F-5, F-6, and F-7 are 0.2 g, 0.4 g, and 0.6 g, respectively. Accordingly, their physical properties are almost all the same. 4) Formulas F-5, F-6, and F-7 exhibited an excellent toxicity to Anomis mesogona Walker, Dendrolimus spectabilis Butler, and Margaronia perspectalis Walker at the concentration of 5%. 5) Formulas F-8 and F-9 which contain $NaHCO_3$ as one of their components showed a remarkably reduced toxicity to Anomis mesogona Walker and Dendrolimus spectabilis Butler than F-6 which does not contain $NaHCO_3$. 6) A maximum of $2.97{\times}10^9$ spores per ml was obtained by incubating B. thuringiensis in M-3 which has a pH of 7.05 and comprises 0.2% of ammonium sulphate and 0.8% of glucose dissolved in the cocoon-cooked water, with aeration for 96 hours. 7) Formula F-6 exhibited a somewhat reduced toxicity to Anomis mesogona Walker and Dendrolimus spectabilis Butler, when stored at room temperature for 70 days after formulation and it is desirable to keep it in a dark and cold place. 8) In held applications, formula F-6 showed a good activity in controlling Monema flavescens Walker. Margaronia perspectalis Walker, and Macrosiphum ibarae Matsumura.

  • PDF

황금배 동녹 방지용 및 갈색배 방균.방충처리용 봉지 개발

  • 류정용;여성국;신종호;송봉근;한점화
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.04a
    • /
    • pp.148-149
    • /
    • 2000
  • 황금배는 1967년에 신고에 이십세기를 교배하여 1977년 1차선발과 1982년 2차선발을 거 쳐 1984년 최종선발, 명명한 품종으로, 당도가 높고 육질이 부드러워서 최근 몇년 사이에 캐 나다, 미국, 호주, 그리고 유럽 지역에서의 수요가 급증하고 있는 수출전망이 매우 밝은 품 종 중의 하나이다(92년 재배면적 lOha 수출량 5. 8M/T, 95년 재배면적 150ha 수출량 2 200.6M/T), 황금배는 비교적 대과이고 과형은 원형에 가까운 편원형으로서 사과 골든처럼 과피가 황금색이고 과육은 연황백색으로 투명하며 보기에 극히 미려한 특징이 있다. 아울러 육질이 유연치밀하고 과즙이 극히 많으며 당도가 높아 13$^{\circ}$ Bx이상, 15도 Bx까지 측정되는 둥 감산이 적화되어 맛이 극히 우수하다. 그러나 이러한 황금배는 동녹, 흑반병 등 병충해로 인한 상품가치의 하락으로 현재 수요를 충족시키지 못하고 있는 실정이다. 1 16세기부터 씌워진 과실봉지는 초기 병해충을 방지할 목적만으로 사용되어 왔지만, 현 재는 방균과 방충의 효과와 함께 자연현상의 최적화를 위한 차광성, 발수성, 투기성을 조절 하며 과실의 외관까지 영향을 미치는 바, 과실봉지의 기능성 부여를 위해서는 고도의 기술 력이 요구되고 있다 하겠다. 상기한 배에 방균방충처리된 과설봉지를 씌워서 재배하면 농 약 살포횟수를 줄이고 배에 농약이 직접 묻지 않아 배의 농약오염을 예방할 수 있으며, 봉 지 안으로의 해충이나 균의 침투를 원천적으로 봉쇄할 수 있다. 그러나 기존의 황금배용 봉 지는 비록 기타 병충해 피해를 방지하는 효과는 있었으나, 동녹을 억제하는 효력이 다소 미 흡하였다. 과피의 비정상적인 코르크화로 인해 발생하는 동녹은 과피의 물리적 할렬과 생리적 장 해에 의해 발생하는 것으로 알려져 있다(永澤 1940). 과실이 비대해짐에 따라 과피의 기공 (과점)이 할렬하면서 코르크화가 진행되는데 그 발생정도나 시기는 배의 품종에 따라 다르 나 일반적으로 코르크화는 기상조건, 특히 습도와 밀접한 관련이 있다고 알려져 있다 황금 배의 재배에 봉지를 적용하면 일반적으로 과피의 코르크화가 억제되는데 그러한 이유는 다 음과 같이 설명할 수 있다. 과실은 하루를 주기로 하여 수축과 팽창을 반복하면서 비대화하 는데 이러한 현상은 과실 내의 수분 조건에 따르는 것으로, 봉지재배의 경우 무대재배보다 단기간에 변화되는 습도의 범위가 좁아 급변을 방지하기에 과점의 할렬이 완화될 수 있다. 즉, 봉지를 씌웅으로서 봉지 내의 대기 환경이 외기보다 안정적으로 유지되고 직사광선이나 농약 및 마찰로부터 과실을 보호해 주기에 동녹이 어느 정도 방지될 수 있는 것이다. 그러나 기존의 황금배봉지는 동녹의 정도를 완화시킬 뿐 완전히 방지할 수 없었으며, 봉지를 적 용한 재배조건에서의 동녹발생 기구를 정확히 이해하지 못했었기에 효과적으로 봉지의 기능 을 개선하는 것이 불가능하였다. 과설의 미려도는 과실의 맛과 함께 그 가치를 결정짓는 중요한 물성으로서 우리나라 황 금배 재배환경과 특성에 알맞은 배봉지의 제작이 선결될 때, 배 품질의 향상, 안정된 공급이 가능하게 될 것이며 아울러 농가의 수업증대와 수출 경쟁력 강화가 이루어질 수 있을 것으로 판단된다. 이러한 측면에서 황금배 재배농가가 당면한 동녹발생의 문제점을 신속한 해결 을 위한 새로운 기능성 국산 황금배 봉지의 개발이 절실히 요구되고 있다. 위와 같은 문제를 해결하기 위하여 본 연구에서는 과실봉지의 종류간에 동녹발생 정도 가 상이한 점에 예의 주시하여 다양한 봉지의 적용실험을 통해 다음과 같은 결과를 얻었다. 황금배의 동녹 발생 정도는 배봉지의 발수성과 투기 및 투습도에 의해 크게 영향받는다. 상기한 바와 같이 과점의 코르크화로 인해 동녹이 발생된다고 할 때, 봉지 내의 습기 및 웅결수의 양은 황금배의 동녹에 중대한 영향을 미친다. 태양광이 내려찍는 낮 시간동안 황 금배는 증산작용을 하며 습기를 배출하는데 봉지 내의 온도가 높은 낮 시간 동안 수분이 습기로 존재하지만 기온이 급격히 떨어지는 일몰 이후에는 상대습도가 높아짐에 따라 결로 현상으로 인해 응결수가 된다. 이때 응결수와 접촉한 과피는 건조한 상태보다 세균의 침입 이 용이할 뿐만 아니라 기공(과점)의 호홉에 지장이 초래됨에 따라 과점의 할렬이 더욱 조 장되어 코르크화를 유발하고 결과적으로 동녹이 발생한다고 판단된다. 따라서 만일에 봉지 의 투기, 투습도가 양호하여 봉지 내의 과다한 수분이 충분히 배출될 수 있었다면, 수분의 응결을 피하고 동녹을 완화시킬 수 있을 것이라 판단되었다.

  • PDF

Studies on Increasing the Efficiency of Nitrogen Nutrition (질소영양(窒素營養)의 효율증진(效率增進)에 관(關)한 연구(硏究))

  • Kwack, Pan-Ju
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.151-166
    • /
    • 1969
  • I. Fffects of nitrogen supplying level and culture condition on the top growth aod tubers formation of Ipomoea Batatas. 1) The low level nitrogen (A plot) 3 Milliequivalent per liter of nutrient solution stimulated tuber formation while the high level nitrogen ($B_1\;and\;B_2$ plot) of 10 milliequivalent per liter failed to form tuber though fibrous roots were seen much activated. The suppressive effect of nitrogen on tuber formation in presumed to result from the direct suppressive effect of nitrogen or a certain biocatalystic effect rather than from any indirect effect through the stimulation to growth of tops or the competition with carbohydrates. 2) The addition of milligram urea to nutrient solution stimulated the growth and increased fresh weight and dry weight of the aerial part while suppressed, a little, plant length. 3) The water culture method, which this experiment newly adopted, stimulated plant growth more than the gravel Culture method. And the treatment of low level nitrogen (A plot) in this water culture also saw a considerable degree of tuber formation, as in the case of gravel culture. 4) The foliar application of growth retardant B-nine suppressed the plant length only, with no other recognizable effect. II. Fffects of urea supplying level on the growth of IPOMOEA BATATAS. 1) The higher level of urea which was absorbed tby roots through nutrient solution suppressed top growth, such as plant length, number of leaves and fresh weight. And this can be attributed to the direct absorption of urea which was not ammonificated. 2) Although the higher level of nitrate nitrogen (B plot) made no tuber formation in previous experiment (Report-1), the higher level of urea nitrogen (A plot) made tuber formation possible in this experiment. The ratio of tuber to top was, however, less in higher level of urea than in lower level of urea, and the suppressing effect was larger on tuber than on top. 3) The foliar application of urea stimulated top growth while the higher level of urea absorbed by roots suppressed it, though the amounts of urea supplied in two experiments were same. Ratio of top to roots was larger in foliar application of urea (C plot) and less in root absorption of urea both of higher (B plot) and lower urea levels (A plot). III. Fffects of growth retardant etc. on the growth of IPOMOEA BATATAS in relation to urea application. 1) B-nine (N-dimethyl amino-succinamic acid) is recognized as a growth retardant, suppressed the plant length irrespective of urea levels. The treatment of gibberellin stimulated distinctly plant length, and the combined treatment of gibberellin and B-nine recovered completely the plant length which had been suppressed by B-nine. 2) B-nine increased fresh weight, especially, fresh weight of top both in lower and higher level of The degree of fresh weight increase varied according to concentrations of B-nine, of which the 0.15% of B-nine ($B_1$ plot) was the effective in higher level of urea. The effect of B-nine for increasing fresh weight was the largest in top next in tuber, and the least in fibrous roots. The ratio of fibrous roots to top was always decreased by B-nine application, which the ratio of tuber to top was contrary increased by B-nine in higher level of urea though decreased in lower level of urea. 3) Gibberellin treatment also increased fresh weight but the combined treatment ($B_3$+GA plot) of gibberellin and B-nine was even more effective than any of single treatments. Gibberellin and B-nine proved to be synergistic with fresh weight while reverse with plant length. 4) Considerable influences were abserved mainly in the length of plants and their fresh weight after B-nine treatment. So that B-nine may be reguraded as a metabolic controller rather than as an antimetabolite. 5) The surpressed growth of plants cause by higher level of urea was normalized by B-nine treatment. This fact suggested a further study on the applicability for practical use.

  • PDF