• Title/Summary/Keyword: 산화.환원

Search Result 1,719, Processing Time 0.029 seconds

Study on the Oxidation and Dissolution Characteristics of Biogenic Mackinawite (미생물 기원 맥키나와이트의 산화 및 용해 특성 연구)

  • Lee, Seung-Yeop;Baik, Min-Hoon;Jeong, Jong-Tae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.155-162
    • /
    • 2012
  • We observed characteristic oxidation and dissolution phenomena induced by dissolved oxygen for mackinawite that is produced via sulfate-reducing bacteria (SRB) living in anaerobic environments such as soils and groundwater. We tried to recognize the role of the sulfide minerals that usually coexist with some stabilized radionuclides (e.g., reduced uranium), which can be reoxidized and redissolved by an oxygen-rich groundwater invaded into a contaminated area. The mackinawite produced by 'Desulfovibrio desulfuricans', a sulfate-reducing bacterium, was conducted to be dissolved for 2 weeks by some oxidants such as 'hydrogen peroxide' and 'sodium nitrite'. Although mineralogical oxidation and dissolution characteristics were different from each other according to the oxidants, the initially oxidized solution was early stabilized through the oxygen consumption by ${\mu}m$-sized sulfide particles and the resultant increase of sulfate in solution. From these results, we can anticipate that the large amount of sulfide minerals generated by SRB can not only repress the anoxic environment to be disturbed by the consumption of oxygen in groundwater, but also contribute to stabilize the reduced/precipitated radionuclides as a buffer material for a long time.

Carbothermic Reduction of Zinc Oxide with Iron Oxide (산화아연(酸化亞鉛)의 탄소열환원반응(炭素熱還元反應)에서 산화철(酸化鐵)의 영향(影響))

  • Kim, Byung-Su;Park, Jin-Tae;Kim, Dong-Sik;Yoo, Jae-Min;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.44-51
    • /
    • 2006
  • Most electric arc furnace dust (EAFD) treatment processes to recover zinc from EAFD employ carbon as a reducing agent for the zinc oxide in the EAFD. In the present work, the reduction reaction of zinc oxide with carbon in the present of iron oxide was kinetically studied. The experiments were carried out at temperatures between 1173 K and 1373 K under nitrogen atmosphere using a weight-loss technique. From the experimental results, it was concluded that adding the proper amount of iron oxide to the reactant accelerates the reaction rate of zinc oxide with carbon. This is because iron oxide in the reduction reaction of zinc oxide with carbon promotes the carbon gasification reaction. The spherical shrinking core model for a surface chemical reaction control was found to be useful in describing kinetics of the reaction over the entire temperature range. The reaction has an activation energy of 53 kcal/mol (224 kJ/mol) for ZnO-C reaction system, an activation energy of 42 kcal/mol (175 kJ/mol) for $ZnO-Fe_{2}O_{3}-C$ reaction system, and an activation energy of 44 kcal/mol (184 kJ/mol) for ZnO-mill scale-C reaction system.

Preparation of RGO coated TiO2 for improved electrical conductivity (전기 전도성 향상을 위한 RGO가 코팅된 TiO2 제조)

  • Kim, Su-Deok;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.192.1-192.1
    • /
    • 2016
  • 타이타늄은 밸브 메탈의 일종으로, 다양한 전해질 조건에서 양극산화되어 이산화 타이타늄($TiO_2$)을 형성한다. 이산화 타이타늄은 저렴한 가격, 풍부함, 무독성, 높은 안정성 등 다양한 장점을 지닌다. 또한 리튬 이온의 삽입/탈리 이후에도 구조적인 변화가 적은 성질과 비교적 높은 방전 전압(1.0-2.5 V vs Li/Li+)으로 인해 그래파이트를 대체할 리튬이온 전지의 전극재료로써 연구되어 왔다. 하지만 낮은 이온 및 전기 전도도로 인해 다양한 분야에서의 활용에 한계가 있어왔다. 이러한 한계 극복을 위해, 이산화 타이타늄에 전도성이 높은 탄소 계열의 물질을 코팅하는 방법이 고려되었다. 그래핀 산화물은 강한 산을 이용하여 그래파이트를 산화시킨 물질로, 많은 산소작용기를 함유하고 있어 탄소 고유의 전기전도성을 갖지 못한다. 환원 그래핀 산화물(reduced graphene oxide)는 빛, 열, 화학 작용울 통해 그래핀 옥사이드를 환원시켜 산소작용기를 없앤 물질로, 환원과정에서 전기전도성을 회복한다. 이에 본 연구에서는 이산화 타이타늄에 환원 그래핀 산화물(reduced graphene oxide)를 코팅하여 전기 전도도를 향상시키고. 이에 대한 활용 분야를 연구하고자 하였다.

  • PDF

Applicable Properties of Electrolyzed Acid-Water as Cleaning Water (세정수로서의 전해산화수 적용 특성)

  • 정진웅;정승원;김명호
    • Food Science and Preservation
    • /
    • v.7 no.4
    • /
    • pp.395-402
    • /
    • 2000
  • To enlarge application field of electrolyzed acid-water(EAW) on food industry, the changes of EAW properties by storage conditions and heating were investigatet. It was showed that storing EAW in closed container is mon effective to keep up the oxidation-reduction potentials(ORP), hyperchloride content and pH than stored in opened ones. ORP of EAW stored in closed container could be kept mon than 1 month as 1,150 mV levels. Ruing heating from 2$0^{\circ}C$ to 95$^{\circ}C$, ORP was increased to 1,150 mV levels at 95$^{\circ}C$ after gradual decrease to 5$0^{\circ}C$. Tyrosinase activity was decreased approximately to 26%~35% in EAW having a 950 mV~1,140 mV ORP. Also it was confirmed that EAW has anti-browning effect as sliced apple and potato, and their juices treated with EAW had conspicous difference in their $\Delta$E value. 12 kinds of pesticides such as aldrine, capful diazinon, diedrin, $\alpha$-endosulfan $\beta$-endosulfan, endosulfan sulfate, endrin, $\alpha$-BHC, o,p'-DDT, procymidone, PCNB added in EAW were recovered from ND~73.6% comparing to ones added in distilled water. The recovered amounts of pesticides, procymidone and diazinon in lettuce after soaking in EAW were 1.12 ppm and ND, compared with those of amounts soaked in distilled water were 3.67 ppm and 3.05 ppm respectively. So, it seems that EAW has potentials to promote the degradation of pesticides.

  • PDF

Measurements of Separation Properties of AM, ARM Oxidesin Molten LiC1 (AM, AEM 산화물들의 용융 LiC1에서의 분리 물성 측정)

  • 오승철;박병흥;강대승;서중석;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.363-367
    • /
    • 2003
  • Much attention has been given to an electrochemical reduction process for converting uranium oxide to uranium metal in molten salt. The process has the versatility of being adopted for reducing other actinide and rare-earth metals from their oxides. Using the metal oxide to be reduced as a integrated cathode designed originally and inert conductors as anodes, oxygen anions are removed from the cathode and oxidized at the surface of the anodes in a molten salt cell. However, the electrochemical properties of alkali and alkali-earth metal oxides in molten salt have not been investigated thoroughly, which made the process incomplete when it is considered as a unit process in a back-end fuel cycle. It is well known that cesium and strontium Isotopes in spent fuel are main contributors for head load. The properties of cesium, strontium, and barium oxides such as the dissolution rates and reduction potentials in molten LiC1 dissolving $Li_2O$ are examined.

  • PDF

Thermo-chemical Cycle with $NiFe_2O_4$ for Water-Splitting to Produce Hydrogen ($NiFe_2O_4$ 금속산화물의 열화학싸이클에 의한 물분해 수소생산기술)

  • Han, Sang-Bum;Kang, Tae-Bum;Joo, Oh-Shim;Jung, Kwang-Deog
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.2
    • /
    • pp.132-138
    • /
    • 2008
  • 금속산화물의 열화학싸이클에 의한 수소생산 소재중 안정성이 우수하고 물분해 수소생산능이 비교적 우수한 $NiFe_2O_4$를 합성하여 열화학수소생산공정 적용시 최적화의 조건에 대하여 검토하였다. 합성한 $NiFe_2O_4$는 격자상수가 $8.34\;{\AA}$이었고, 뫼스바우어에 의해 구조는 Ni이 페라이트 구조인 $AB_2O$의 B위치에 주로 위치하는, A 및 B의 상대적 흡수강도가 57.9:42.1인 역스피넬구조를 보이고 있다. 이러한 구조의 $NiFe_2O_4$의 열적환원은 $610^{\circ}C$부터 시작하여 $1200^{\circ}C$에 이르는 동안 약 1.1 wt%의 무게감소가 관찰된다. 물에 의한 산화과정에서 수소가 발생하게 되는데, $1200^{\circ}C$이하의 환원온도에서 가능한 수소생산량은 약 $0.45\;cm^3/g{\codt}cycle$ 이었다. 산화 환원의 반복과정에서 $NiFe_2O_4$의 XRD에 의한 구조변화는 관찰되지 않아 매우 안정한 구조를 갖는다는 것을 보여주었다. 수소생산을 위한 무게당 싸이클당 수소생산양은 산화 환원과정의 온도범위가 가장 중요하였고 물의 접촉시간은 중요한 요소가 되지 않았다. 열적 환원과정에서 많은 양의 수소생산성능을 보이기 위해서는 $1200^{\circ}C$이상의 고온을 필요로 하는 것을 보여주었다.

A study on creep behaviors of $Ni-5wt.\%Al$ Anode for MCFC (용융탄산염 연료전지용 $Ni-5wt.\%Al$ Anode의 creep 특성에 관한 연구)

  • 김규범;문영준;임희천;이덕열
    • 한국전기화학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.231-236
    • /
    • 2001
  • 용융탄산염 연료전지용 anode의 creep 현상을 개선하기 위해 $Ni-5wt.\%Al$ green sheet를 사용하여 다양한 소결조건을 적용, $Al_2O_3$를 형성시킨 전극을 제조하고 그 $Al_2O_3$의 형태에 따른 creep 특성에 대해 연구하였다. 소결은 각각 환원분위기, 완전산화-환원분위기, 부분 산화-환원분위기의 서로 다른 분위기에서 진행하였는데, 부분산화-환원분위기로 소결한 경우 Ni-Al 고용체 네트워크를 깨드리지 않고 $A1_2O_3$를 미세한 입자형태로 분산시킬 수 있었다. 그리고, 상기의 방법으로 제조된 anode를 $650^{\circ}C$에서 100psi로 가압하면서 creep test를 실시한 결과 약 $2.3\%$의 변형율을 나타내었다.

  • PDF

Durability Extension of Fe(0) Column with Shewanella Algae BrY on TCE Treatment (Shewanella algae BrY를 이용한 영가철 칼럼의 TCE 처리 수명연장)

  • Chae, Heehun;Bae, Yeunook;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.2
    • /
    • pp.41-48
    • /
    • 2007
  • Zevo-valent iron (ZVI) has been widely used in permeable reactive barriers for reducing organic contaminants, such as trichloroethylene (TCE). The rapid reaction time, however, leads to decrease in reactivity and availability of ZVI. Shewanella algae BrY, a strain of dissimilatory iron reducing bacteria, can reduce the oxidized Fe (III) to Fe (II) and reduced Fe (II) can be reused to reduce the contaminant. The effect of Shewanella algae BrY on the reduction of the oxidized ZVI column and further TCE removal in the contaminated groundwater were studied at different flow rates and TCE input concentrations in this study. High input concentration of TCE and flow rate increase the amount of input contaminant and make to lower the effect of reduction by Shewanella algae BrY. Specially, the fast flow rate inhibits the direct contact and implantation on the surface of iron. The reduction of oxidized iron reactive barrier by Shewanella algae BrY can decrease the decreation of duration of PRBs by the precipitation of oxidized iron produced by dechlorination of TCE.

  • PDF

Effect of Redox Processes and Solubility Equilibria on the Behavior of Dissolved Iron and Manganese in Groundwater from a Riverine Alluvial Aquifer (만경강 하천변 충적 지하수의 용존 Fe와 Mn 거동에 대한 산화-환원 과정과 용해 평형의 효과)

  • Choi, Beom-Kyu;Koh, Dong-Chan;Ha, Kyoo-Chul;Cheon, Su-Hyun
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.29-45
    • /
    • 2007
  • Biogeochemical characteristics involving redox processes in groundwater from a riverine alluvial aquifer was investigated using multi-level monitoring wells (up to 30m in depth). Anaerobic conditions were predominant and high Fe ($14{\sim}37mg/L$) and Mn ($1{\sim}4mg/L$) concentrations were observed at 10 to 20 m in depth. Below 20 m depth, dissolved sulfide was detected. Presumably, these high Fe and Mn concentrations were derived from the reduction of Fe- and Mn-oxides because dissolved oxygen and nitrate were nearly absent and Fe and Mn contents were considerable in the sediments. The depth range of high Mn concentration is wider than that of high Fe concentration. Dissolved organics may be derived from the upper layers. Sulfate reduction is more active than Fe and Mn reduction below 20 m in depth. Disparity of calculated redox potential from the various redox couples indicates that redox states are in disequilibrium condition in groundwater. Carbonate minerals such as siderite and rhodochrosite may control the dissolved concentrations of Fe(II) and Mn(II), and iron sulfide minerals control for Fe(II) where sulfide is detected because these minerals are near saturation from the calculation of solubility equilibria.

The Hydrogen Reduction Behavior of MoO3 Powder (MoO3 분말의 수소환원거동)

  • Koo, Won Beom;Yoo, Kyoungkeun;Kim, Hanggoo
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.29-36
    • /
    • 2022
  • The hydrogen reduction behavior of molybdenum oxides was studied using a horizontal-tube reactor. Reduction was carried out in two stages: MoO3 → MoO2 and MoO2 → Mo. In the first stage, a mixed gas composed of 30 vol% H2 and 70 vol% Ar was selected for the MoO3 reduction because of its highly exothermic reaction. The temperature ranged from 550 to 600 ℃, and the residence time ranged from 30 to 150 min. In the second step, pure H2 gas was used for the MoO2 reduction, and the temperature and residence time ranges were 700-750 ℃ and 30-150 min, respectively. The hydrogen reduction behavior of molybdenum oxides was found to be somewhat different between the two stages. For the first stage, a temperature dependence of the reaction rate was observed, and the best curve fittings were obtained with a surface reaction control mechanism, despite the presence of intermediate oxides under the conditions of this study. Based on this mechanism, the activation energy and pre-exponential were calculated as 85.0 kJ/mol and 9.18 × 107, respectively. In addition, the pore size within a particle increases with the temperature and residence time. In the second stage, a temperature dependence of the reaction rate was also observed; however, the surface reaction control mechanism fit only the early part, which can be ascribed to the degradation of the oxide crystals by a volume change as the MoO2 → Mo phase transformation proceeded in the later part.