• Title/Summary/Keyword: 산화제 유량 제어

Search Result 22, Processing Time 0.015 seconds

Study on the Development Trend of Pressurization System for Propulsion System of Launch Vehicle (발사체 추진기관 가압시스템 개발 사례 연구)

  • Shin, Dong-Sun;Kim, Byung-Hun;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.721-724
    • /
    • 2011
  • A system to pressurize propellants stored in propellant tanks is necessary to feed liquid-propellants into combustion devices at the required pressure and flowrate without having cavitation in turbo-pumps. A pressurization system can be categorized into pre-pressurization stage and main-pressurization stage. This report is regarding to a main-pressurization system. Pressurization methods for propellant tanks are divided into pressurant gas generating method and pressurant gas feeding method. One of pressurant gas generating methods uses the vaporized oxygen gas from cryogenic liquid oxygen and non-flammable gas. In this report, both advantages and disadvantages for pressurization methods and types of pressurization systems are compared. Especially the characteristics and principle of pressurization system using impulsive control strategy applied in launch vehicles are introduced. Additionally the structure, schematics, and specifications of heat exchanger, which is one of main units in pressurization system are also discussed. This paper can be utilized to generate the conceptual requirements and to design preliminary configuration of pressurization system during the development of launch vehicle.

  • PDF

Reactive Ceramic Membrane Incorporated with Iron Oxide Nanoparticle for Fouling Control (산화철 나노입자 부착 반응성 세라믹 멤브레인의 막 오염 제어)

  • Park, Hosik;Choi, Heechul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.144-150
    • /
    • 2013
  • Hybrid ceramic membrane (HCM) processes that combined ozonation with a ceramic membrane (CM) or a reactive ceramic membrane (RM), an iron oxide nanoparticles (IONs) incorporated-CM were investigated for membrane fouling control. Alumina disc type microfiltration and ultrafiltration membranes doped with IONs by sintering method were tested under varying mass fraction of IONs. Scanning electron microscope (SEM) images showed that IONs were well-doped on the CM surface and doped IONs were approximately 50 nm in size. Change in the pure water permeability of RM was negligible compared to that of CM. These results indicate that IONs incorporation onto CM had little effect on CM performance in terms of the flux. Natural organic matter (NOM) fouling and fouling recovery patterns during HCM processes confirmed that the RM-ozonation process enhanced the destruction of NOM and reduced the extent of fouling more than the CM-ozonation process by hydroxyl radical formation in the presence of IONs on RM. In addition, analyses of NOM in the feed water and the permeate showed that the efficiency of membrane fouling control results from the NOM degradation during HCM processes; leading to removal and transformation of relatively high contents of aromatic, high molecular weight and hydrophobic NOM fractions.