• Title/Summary/Keyword: 산업로봇

Search Result 1,043, Processing Time 0.035 seconds

Development of Embedded LCD Module based on RTOS (RTOS기반 임베디형 LCD모듈 개발)

  • Lee, Min-Jung;Park, Jin-Hyun;Jin, Tae-Seok;Cha, Kyung-Hwan;Choi, Young-Kui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.209-212
    • /
    • 2008
  • During several years, lots of industrial and individual products have been developed based on the text or graphic LCD module which has been gave the short developing period to the developer. With the advent of home networks and intelligent robots, the need for interaction between human and instruments has been increased. Recently, goods with a TFT-LCD come out. But in spite of a simple required performance, the complicated microprocessor, such as ARM processor, is required to interface the TFT-LCD and touch screen. Our research and development is to develope an embedded TFT-LCD module in order to use or apply to the goods through the simple interface by the general users as well as the developers. We adopt the RTOS(real time operating system) in order to operate TFT-LCD independently and various communication protocols are provided in order to offer the simple interface to users and developers.

  • PDF

Ergonomic Evaluation of a Powered Rail Trolley in a Tomato Greenhouse (토마토 온실 내 레일 전동 작업차의 인간공학적 작업 부하 평가)

  • Jeong, Eun Seong;Yang, Myongkyoon;Son, Daesik;Cho, Seong In
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.143-143
    • /
    • 2017
  • 산업이 고도화됨에 따라 자동화 기계 및 로봇에 의해 대량 생산 되는 품목과 달리, 작업 절차의 비정형성, 비연속성 등으로 인해 여전히 농업에 많은 인력이 투입되고 있다. 국제노동기구에 따르면, 세계 인력의 절반이 농업 인력에 해당하고 작업 중 부상이나 사망 등으로 인해 가장 위험한 직업군 중 하나에 해당하는 것으로 나타났다. 시설 재배 농업의 경우, 노동집약적인 온실 내 작업 특성상 잘못된 자세로 작업하거나 지나친 작업량 등으로 인해 작업자에게 근골격계 질환이 발생할 수 있다. 근골격계 질환으로 인해 작업효율이 감소하거나 생산비용의 증가로 이어질 수 있으며, 농가 수익에 손실이 발생할 수 있다. 이에 본 연구에서는 현행 시설 재배 농업에서 사용되는 레일 전동 작업차를 이용하여 작업자가 토마토를 수확할 때의 신체에 대한 농작업의 부하를 평가하고자 하였다. 작업차를 이용한 주요 작업 절차는 작물로부터 과실 수확, 과실 상자에 과실 투입, 빈 과실 상자와 가득 찬 과실 상자의 교대, 작업차 위의 과실 상자를 운반용 파레트에 하역하는 순서로 이루어지는 것을 확인하였다. 비디오장비로 촬영된 일련의 농작업 과정을 OWAS, RULA, REBA와 같은 체크리스트형 인간공학적 작업 부하 평가 도구를 이용하여 평가한 결과, 기존 레일 전동 작업차를 이용한 농작업의 근골격계 질환 유발 가능성을 확인하였다. 동작별 위험성을 토대로 근골격계 질환 유발 가능성이 높아 개선이 필요한 농작업 동작을 선정하였다. 선정된 동작은 실험실 내 환경에서 피실험자를 통한 모의 동작의 생체 신호 계측을 통해 신체 부하 정도를 정량적으로 측정할 수 있으며, 보조가 필요한 신체 부위를 특정하거나 안전성 확보가 필요한 동작에 대한 증거가 될 수 있다. 본 연구를 통해 향후 토마토 온실 내 신선도 유지를 위한 레일 전동 작업차의 개발에 작업자의 안전과 효율성 향상을 위한 인간공학적 설계를 적용할 수 있을 것으로 기대한다.

  • PDF

A Vibration Rejection of Linear Feeder System with PMSM using Adaptive Notch Filter (적응형 노치 필터에 의한 PMSM을 이용한 선형 피드 시스템의 진동 억제)

  • Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.274-283
    • /
    • 2006
  • The Permanent Magnet Synchronous Motor(PMSM) drive systems with ball-screw, gear and timing-belt are widely used in industrial applications such as NC machine, machine tools, robots and factory automation. These systems have torsional vibration in torque transmission from servo motor to mechanical load due to the mechanical couplings. This vibration makes it difficult to achieve quick responses of speed and may result in damage to the mechanical plant. This paper presents adaptive notch filter with auto searching function of vibration frequency to reject the mechanical vibration of linear feeder system with PMSM. The proposed adaptive notch filter can suppress the torque command signal of PMSM in the resonant bandwidth for reject the mechanical torsional vibration. However, the resonant frequency can vary with conditions of mechanical load system and coupling devices, adaptive notch filter can auto search the vibration frequency and suppress the vibration signal bandwidth. Computer simulation and experimental results shows the verification of the proposed adaptive notch filter in linear feeder system with PMSM.

A study on simulation and performance improvement of industrial robot manipulator controller using adaptive model following control method (적응모델추종제어기법에 의한 산업용 로봇 매니퓰레이터 제어기의 성능개선 및 시뮬레이션에 관한 연구)

  • 허남수;한성현;이만형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.463-477
    • /
    • 1991
  • This study proposed a new method to design a robot manipulator control system capable of tracking the trajectories of joint angles in a reasonable accuracy to cover with actual situation of varying payload, uncertain parameters, and time delay. The direct adaptive model following control method has been used to improve existing industrial robot manipulator control system design. The proposed robot manipulator controller is operated by adjusting its gains based on the response of the manipulator in such a way that the manipulator closely matches the reference model trajectories predefined by the designer. The manipulator control system studied has two loops: they are an inner loop on adaptive model following controller to compensate nonlinearity in the manipulator dynamic equation and to decouple the coupling terms and an outer loop of state feedback controller with integral action to guarantee the stability of the adaptive scheme. This adaptation algorithm is based on the hyperstability approach with an improved Lyapunov function. The coupling among joints and the nonlinearity in the dynamic equation are explicitly considered. The designed manipulator controller shows good tracking performance in various cases, load variation, parameter uncertainties. and time delay. Since the proposed adaptive control method requires only a small number of parameters to be estimated, the controller has a relatively simple structure compared to the other adaptive manipulator controllers. Therefore, the method used is expected to be well suited for a high performance robot controller under practical operation environments.

Wide FOV Panorama Image Acquisition Method (광각 파노라마 영상획득 방법)

  • Kim, Soon-Cheol;Yi, Soo-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2117-2122
    • /
    • 2015
  • Wide FOV(Field-of-View) is required to contain much more visual information in a single image. The wide FOV imaging system has many industrial applications such as surveillance, security, tele-conference, and mobile robots. In order to obtain a wide FOV panorama image, an imaging system with hyperbolic cylinder mirror is proposed in this paper. Because the horizontal FOV is more important than the vertical FOV in general, a hyperbolic cylinder mirror is designed in this paper, that has a hyperbolic curve in the horizontal surface and is the same as a planar mirror in the vertical axis. Imaging model of the proposed imaging system is presented by ray tracing method and the hyperbolic cylinder mirror is implemented. The imaging performance of wide FOV is verified by experiments in this paper. This imaging system is cost-effective and is possible to acquire a wide panorama image having 210 degree horizontal FOV in real-time without an extra image processing.

A Nonlinear Friction Torque Compensation of Servo System with Double Speed Controller (이중 속도 제어 구조에 의한 서보 제어기의 비선형 마찰 토크 보상)

  • Lee Dong-Hee;Choi Cheol;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.612-619
    • /
    • 2004
  • Servo motor systems with ball-screw and timing-belt are widely used in NC, robot, FA and industrial applications. However, the nonlinear friction torque and damping effect in machine elements reduce the control performance. Especially tracking errors in trajectory control and very low velocity control range are serious due to the break-away friction and Stribeck effects. In this paper, a new double speed controller is proposed for compensation of the nonlinear friction torque. The proposed double speed controller has outer speed controller and inner friction torque compensator. The proposed friction torque compensator compensates the nonlinear friction torque with actual speed and speed error information. Due to the actual information for friction torque compensator without parameters and mathematical model of motor, proposed compensator is very simple structure and the stability is very high. The proposed compensator is verified by simulation and experimental results.

AGV Distance Learning Model Based on Virtual Simulation (가상 시뮬레이션 기반의 AGV 원격 교육 모델)

  • Jin, Go-Whan
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.41-46
    • /
    • 2020
  • The start of the Fourth Industrial Revolution has brought about various changes in the domestic industry in general, and smart factories have spread to companies in the fields of production, manufacturing and logistics, and they are using automation equipment. Especially in the field of logistics automation, AGVs are widely used, and most of them use the line guidance system, which is the traditional AGV drive system. In addition, the demand for AGV system developers, system operators and managers, and maintenance personnel is increasing, and the installation of systems for education is expensive and requires a large space to utilize. It is a situation where systematic education is difficult. In this paper, we propose a virtual simulation-based AGV distance education model for smooth practice of trainees. The proposed model consisted of a model that can drive the AGV by analyzing video information, instead of the line guidance method that is the conventional technology. As a result of self-diagnosis evaluation, it was confirmed that the experimental group through online education had an average satisfaction level of 0.65 higher than the control group using existing equipment, and that it could be used in an online education environment.

An Intelligent Robotic Biological Cell Injection System (바이오 셀 조작용 지능 로봇 시스템)

  • Shim, Jae-Hong;Cho, Young-Im;Kim, Jong-Hyeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.411-417
    • /
    • 2004
  • Recently, instruments and systems related on biological technology have been enormously developed. Particularly, many researches for biological cell injection have been carried out. Usually, excessive contact force occurring when the end-effector and a biological cell contact might make a damage on the cell. Unfortunately, the excessive force could easily destroy the membrane and tissue of the cell. In order to overcome the problem, we proposed a new injection system for biological cell manipulation. The proposed injection system can measure the contact force between a pipette and a cell by using a force sensor. Also, we used vision technology to correctly guide the tip of the pipette to the cell. Consequently, the proposed injection system could safely manipulate the biological cells without any damage. This paper presents the introduction of our new injection system and design concepts of the new micro end-effector. Through a series of experiments the proposed injection system shows the possibility of application for precision biological cell manipulation such as DNA operation.

Review of Domestic Research on Smart Manufacturing Technologies (스마트제조 기술 국내연구 고찰)

  • Park, Jong-Kyung;Chang, Tai-Woo
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.2
    • /
    • pp.123-133
    • /
    • 2018
  • Recently, countries are pursuing vigorous research, development and commercialization in cooperation with industry, academia and researcher to take the lead in building a smart manufacturing system that is at the center of the fourth industrial revolution. According to a research report [4], the competitiveness of Korea in the area of basic technology, hardware, and software of the smart factory is reported to be less than 70% of the developed countries. In this study, we reviewed the existing research literature and analyzed the current status of smart manufacturing technology and major issues in the manufacturing industry. We tried to provide ideas for collaboration with core technology researchers and companies with business processes. Internet of Things, CPS and robot technologies have been the most active in smart manufacturing area. It can be seen that cooperation between researchers and industries in the early stage is being done through the case of industry application of each core technology.

Estimation of Weld Bead Shape and the Compensation of Welding Parameters using a hybrid intelligent System (하이브리드 지능시스템을 이용한 용접 파라메타 보상과 용접형상 평가에 관한 연구)

  • Kim Gwan-Hyung;Kang Sung-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1379-1386
    • /
    • 2005
  • For efficient welding it is necessary to maintain stability of the welding process and control the shape of the welding bead. The welding quality can be controlled by monitoring important parameters, such as, the Arc Voltage, Welding Current and Welding Speed during the welding process. Welding systems use either a vision sensor or an Arc sensor, both of which are unable to control these parameters directly. Therefore, it is difficult to obtain necessary bead geometry without automatically controlling the welding parameters through the sensors. In this paper we propose a novel approach using fuzzy logic and neural networks for improving welding qualify and maintaining the desired weld bead shape. Through experiments we demonstrate that the proposed system can be used for real welding processes. The results demonstrate that the system can efficiently estimate the weld bead shape and remove the welding detects.