• Title/Summary/Keyword: 산소전달량

Search Result 64, Processing Time 0.03 seconds

Effect of Salinity on Dissolved Oxygen Characteristics in an Ejector-Aerator (이젝터-폭기 시스템의 용존산소특성에 미치는 염도의 영향)

  • Yang, Hei-Cheon;Park, Sang-Kyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.640-646
    • /
    • 2011
  • Dissolved oxygen (DO) refers to the volume of oxygen that is contained in water, and is a major indicator of water quality. The objective of this paper was to investigate the effect of salinity on the dissolved oxygen characteristics in an ejector-aerator. An experimental aeration system composed of a motor-pump, an ejector, a motor-blower, a set of aeration and recirculation tank and a control panel. The dissolved oxygen concentrations decreased with the water salinity. The volumetric mass transfer coefficient increased with increasing the water salinity.

Effects of Oxygen Transfer Rate of a Polystyrene Foam Bead Media in a Packed Column Aerator (Packed Column 에어레이터에서 매질로 이용한 발포스티로폼 입자의 산소 전달 효과)

  • 박정환;김유희;조재윤
    • Journal of Aquaculture
    • /
    • v.13 no.3
    • /
    • pp.267-275
    • /
    • 2000
  • To evaluate the characteristics and efficiency of oxygen transfer rate of a polystyrene foam bead as media in a packed column aerator was tested. This media has more surface area and cheaper than other ordinary plastic media. The polystyrene foam media was a sphere-shaped bead with 2.5 mm in diameter and specific surface area was 1,350 $m^2$/$m^3$. Oxygen transfer rate and standard aeration efficiency were tested under different hydraulic loading rates, depths of the media and temperatures. Experiment 1 was performed using a small packed column aerator with 10 cm in diameter and 1 m in length. The aerator filled with 0, 4.5, 9.0 and 18.0 cm of the media was tested under hydraulic loading rates of 2.0, 4.0 and 5.6 $m^3$/$m^2$/min at temperatures of 20, 25 and 3$0^{\circ}C$, respectively. In this experiment, standard oxygen transfer rate (SOTR) increased with the hydraulic loading rate and depth of the media increased. The maximum SOTR was reached at 5.6 $m^3$/$m^2$/min of hydraulic loading rate with 9 cm in depth of the media. However, standard aeration efficiency (SAE) decreased with the hydraulic loading rate increased because electricity consumed by pump increased as hydraulic loading rate increased. The highest SAE was reached at hydraulic loading rate of 2.0 $m^3$/$m^2$/min with 9.0 cm in depth of the media. Therefore, the highest SOTR and SAE were achieved at 9.0 cm in depth of the media regardless of the hydraulic loading rate. The maximum SAE was about 1.8 kg $O_2$/kW-hr with the hydraulic loading .ate of $m^3$/$m^2$/min at temperature of 20 $^{\circ}C$.Experiment 2 was performed using a larger aerator, 20 cm in diameter with 2 m in height. The aerator filled with 0, 9, 18, 27 and 36 cm of the media was operated under hydraulic loading rate of 2.0, 4.0 and 5.6 $m^3$/$m^2$/min at temperature of 27 $^{\circ}C$. The SAE reached to the highest efficiency (1.9 kg $O_2$/kW-hr) at 2.0 $m^3$/$m^2$/min of hydraulic loading rate and 36 cm in depth of the media. According to the above results, the polystyrene foam bead as a media in a packed column aerator was effective to increase oxygen transfer rate.

  • PDF

Selection of Oxygen Carrier Candidates for Chemical Looping Combustion by Measurement of Oxygen Transfer Capacity and Attrition Loss (산소전달량 및 마모손실 측정에 의한 매체순환연소용 산소전달입자 후보 선정)

  • KIM, HANA;PARK, JAEHYEON;BAEK, JEOM-IN;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.404-411
    • /
    • 2016
  • To select appropriate oxygen carrier candidates for chemical looping combustion, reduction characteristics of seven oxygen carriers were measured and discussed using three different reduction gases, such as $H_2$, CO, and $CH_4$. Moreover, attrition losses of those oxygen carriers also measured and compared. Among seven oxygen carrier particles, OCN703-1100 and NiO/bentonite particles showed higher oxygen transfer capacity than other particles, but these particles showed more attrition loss than other particles. C14 and C28 particles which used as cheap oxygen carriers in European country showed lower oxygen transfer capacity and less attrition loss. Based on the experimental results, we could select OCN717-R1SU, NC001, and N002 particles as candidates for future works because these oxygen carriers showed enough oxygen transfer capacity and good attrition resistance.

A Study on Redox Properties of CaSnO3 Oxygen Carrier for Chemical Looping Combustion Process (매체순환연소공정용 CaSnO3 산소전달입자의 산화·환원 특성 연구)

  • Son, Eun Nam;Baek, Seung Hun;Lee, Roosse;Sohn, Jung Min
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2019
  • This study investigated the feasibility of $CaSnO_3$ particles as an oxygen carrier in chemical looping combustion (CLC). $CaSnO_3$ particles had a perovskite crystal structure and showed the structural stability after repeated reduction-oxidation reactions. The oxygen transfer capacity was 15.4 wt% almost the same as the calculated theoretical value from the crystal structure transformation during reduction. After $10^{th}$ cycles of reduction and oxidation, the oxygen transfer capacity and rate were still maintained constantly at an operating temperature. In conclusion, $CaSnO_3$ particles could be a good alternative material as an oxygen carrier in CLC.

Mixed Flow Characteristics of Aeration Process for Recirculation Aquaculture System Using Ejector (이젝터를 이용한 순환양식 시스템 폭기공정의 혼합유동 특성)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.847-854
    • /
    • 2013
  • The objective of this study is to experimentally investigate the mixed flow and oxygen transfer characteristics of a horizontally injected aeration process using an annular nozzle ejector. The flow rate ratio, pressure ratio and ejector efficiency are calculated using the measured flow rate and pressure with the experimental parameters of the ejector pitch and primary flow rate. The visualization images of mixed flow issuing from the ejector are analyzed qualitatively, and the volumetric oxygen transfer coefficients are calculated using the measured dissolved oxygen concentration. The mixed flow behaves like a buoyancy jet or horizontal jet owing to the momentum of primary flow and air bubble size. The buoyancy force of the air bubble and the penetration of mixed flow are found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

Effects of Energy Input and Air Flow Rate on Oxygen Transfer Rate at Different MLVSS in a Jet Loop Reactor (JLR) (MLVSS에 따른 Jet Loop Reactor (JLR)에서 동력량과 공기량이 산소전달률에 미치는 영향)

  • Yoon, Ae-Hwa;Bae, Jong-Hun;Lim, Hyun-Woo;Jun, Hang-Bae;Huh, Tae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.868-873
    • /
    • 2011
  • Oxygen transfer rate generally determines the performance of an aerobic wastewater treatment process that treats high strength wastewater such as food wastewater, animal wastewater and landfill leachate. In this paper, OUR and $K_L{\cdot}a$ were evaluated by using Jet Loop Reactor (JLR) according to the concentration of a mixed liquor volatile suspended solid (MLVSS), oxygen (air) flow rate and energy input as the variable of the operating conditions. Also, a nonlinear regression model was proposed by the statistical methods with the calculated $K_L{\cdot}a$. As a results, in case of applying the high strength wastewater which has to maintain high MLVSS, the energy input and the air flow rate are major parameters oxygen transfer rate in JLR. Finally, the final nonlinear regression model had been developed as a function of E/V, $Q_g$, and ${\mu}_c$.

Inhanced Oxygen Supply of Xanthan Fermentations Using either Hydrogen Peroxide or Fluidized Particles in Tower Bioreators (탑형 생물반응기에서 과산화수소 또는 유동화 입자를 이용만 Xanthan 발효의 산소공급 향상)

  • 서일순
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.142-147
    • /
    • 2002
  • The decomposition of hydrogen peroxide was used for supplementing the oxygen during batch xanthan fermentations in a bubble column bioreactor in order to escape the oxygen transfer limitation that occurred at the high viscosity of culture broths. The xanthan production, however, was inhibited reversibly by dosing hydrogen peroxide. On the other hand, fluidized particles of glass beads with 8 mm diameter led to high gas-liquid oxygen transfer rates in three-phase fluidized beds, which resulted in higher space-time yields of the xanthan production compared to in the bubble column bioreactors.

Oxygen Transfer and Hydraulic Characteristics in Bubble Column Bioreactor Applied Fine Bubble Air Diffusing System (미세기포 산기장치를 적용한 타워형 생물반응기의 산소전달 및 수력학적 특성)

  • Lee, Seung-Jin;Ko, Kyeong-Han;Ko, Myeong-Han;Yang, Jae-Kyeong;Kim, Yong-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.772-779
    • /
    • 2012
  • For improving performance of conical air diffuser generating fine bubble, both experimental and numerical simulation method were used. After adapting diffusers inner real scale bubble column, suitable for various diffuser submergence, the effect of diffuser submergence on oxygen transfer performance such as Oxygen Transfer Coefficient ($K_{L}a_{20}$) and Standard Oxygen Transfer Efficiency (SOTE) was investigated empirically. As flow patterns for various diffuser number and submergence were revealed throughout hydrodynamic simulation for 2-phase fluid flow of air-water, the cause of the change for oxygen transfer performance was cleared up. As results of experimental performance, $K_{L}a_{20}$ was increased slightly by 7% and SOTE was increased drastically by 39~72%, 5.6% per meter. As results of numerical analysis, air volume fraction, air and water velocity in bioreactor were increased with analogous flow tendency by increasing diffuser number. As diffuser submergence increased, air volume fraction, air and water velocity were decreased slightly. Because circulative co-flow is determinant factor for bubble diffusion and rising velocity, excessive circulation intensity can result to worsen oxygen transfer by shortening bubble retention time and amount.

Study on the distribution of marine bacteria and the consumption of oxygen in Wonmun bay (원문만의 해양세균분포와 산소소모량에 관한 연구)

  • PARK Young-Tae;LEE Won-Jae;PARK Joo-Suck;LEE Pil_Yong;KIM Hak-Gyoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.5
    • /
    • pp.303-314
    • /
    • 1991
  • Hypoxic bottom $(\leq2.0ml/l),\;40\%\;oxygen\;saturation)$ is formed in the semi-closed Wonmun bay during summer and autumn early. This study was carried out to know seasonal distribution of marine bacteria and the role of marine bacteria for forming the hypoxic bottom at Wonmun bay during summer and autumn early, 1990. During the study periods, 170 bacterial strains were isolated from sea water and sediment. Viable cell counts were ranged between $10^5-10^7\;cells/ml$. The dominant species were Acinetobacter spp. in spring, Flavobacerium spp. in summer, Pseudomonas spp. in autumn, Serratia spp. in winter. Because ETSA(Electron Transport System Activity) reveals potential consumption of oxygen in the aquatic microorganisms, the ETSA was used as potential consumption of oxygen in this study. The potential consumption of oxygen was in the range of $232.4-637.5{\mu}l/O_2/l/day$ by marine organism and $142.6-432.4{\mu}l/O_2/l/day$ by marine bacteria during the study periods. The ratio of potential oxygen consumption of marine bacteria to total marine microorganism was 0.54. The potential consumption of oxygen by marine bacteria closely related with the number of viable cells. Consequently, bacteria play an important role to form Hypoxic bottom at marine environment.

  • PDF

Comparative Bioreactor Studies in Terms of Oxygen Transfer between Suspended and Immobilized Fungal Systems for Cyclosporin A Fermentation (Cyclosporin A 생산을 위한 액체배양과 고정화배양의 생물반응기에서의 산소전달 비교 연구)

  • 전계택
    • KSBB Journal
    • /
    • v.9 no.2
    • /
    • pp.211-223
    • /
    • 1994
  • In fermentations with a 4-liter stirred tank bioreactor, a better than two-fold enhancement of the gas-liquid mass transfer coefficient$(k_La)$ in the celite-immobilized fungal cultures of Tolypocladium in flatum over the parallel conventional free-cell was observed at identical biomass concentrations, despite the higher specific oxygen uptake rate of the immobilized fungi during exponential growth. As a result oxygen sufficient conditions, i. e., dissolve oxygen(D.O.) concentrations exceeding 75% air saturation, could be maintained throughout exponential growth period of the immobilized culture, in contrast to the suspended fungal culture, whose D.O. levels fell below 50% air saturation. A linear monotonic dependence of $k_La$ upon impeller agitaion rate was found for both immobilized and conventional cultivation modes over a range of 250 to 550rpm, the slope being a function of biomass concentration for the free but not for the immobilized cell system In contrasts oxygen transfer rate was a much weaker function of aeration rate up to about 2.5 vvm for both culture configurations. Above this level, aeration rate had no further effect on the mass transfer. In addition, the immobilized cultures sustained good morphological and physiological states, leading to almost two times higher cyclosporln A (CyA) productivity overt the parallel free cell system. These experiments suggest that the celite-immobilized fungal system in a stirred tank reactor has considerable promise for scaling up cyclosporin A production in terms of high-density cultivation.

  • PDF