• Title/Summary/Keyword: 산소연소

Search Result 604, Processing Time 0.027 seconds

Hot-Fire Test of a Turbopump for a 30 Ton Class Engine in Real Propellant Environment (30톤급 엔진용 터보펌프 실매질 고온시험)

  • Hong, Soon-Sam;Kim, Jin-Sun;Kim, Dae-Jin;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.11-17
    • /
    • 2009
  • Hot-fire test of a turbopump for a gas generator cycle rocket engine of 30 ton class was carried out in real propellant environment. Liquid oxygen and kerosene were used for the oxidizer pump and the fuel pump, respectively, while hot gas produced by the gas generator was supplied to the turbine. A part of the propellant discharged from the pumps was provided to the gas generator. The turbopump was run stably at both on-design and off-design conditions, satisfying all the performance requirements. This paper describes one of the test cases, where the turbopump was run for 120 seconds at three different operating modes in one test. In terms of performance characteristics of pumps and turbine, the results from turbopump assembly test using real propellant showed a good agreement with those from the turbopump component tests using simulant working fluid.

  • PDF

Critical Design Result of Liquid Oxygen Filling System for Korea Space Launch Vehicle-II Launch Complex (한국형발사체 발사대시스템 산화제공급설비 상세설계)

  • Seo, Mansu;Ko, Min-Ho;Sun, Jeong-Woon;Suh, Hyun-Min;Lee, Jae Jun;Kang, Sunil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.102-110
    • /
    • 2017
  • In this paper, the liquid oxygen filling system (LOXFS) of the launch complex system of Korea Space Launch Vehicle-II (KSLV-II) is introduced based on critical design result by KARI in 2015 to 2016. The function and specification of the main systems of the liquid oxygen filling system, such as the storage tank, the drainage tank, the supply pumping system, the curved heat exchanger with liquid nitrogen, end valve block system, and umbilical connection, are presented.

Mixture Fraction Analysis on the Combustion Gases of the Full-Scale Compartment Fires (실규모 구획화재의 연소가스에 대한 혼합분율 분석)

  • Ko, Gwon-Hyun;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.128-135
    • /
    • 2010
  • In this study, a mixture fraction analysis was performed to investigate the characteristics of chemical species production in compartment fires burning hydrocarbon fuels such as methane, heptane, and toluene. A series of fire experiments was conducted in the ISO 9705 standard room, and gas species concentration and soot fraction were measured at two locations in the upper layer of the compartment. The mass fractions of measured chemical species, such as unburned hydrocarbons (UHC), carbon monoxide (CO), carbon dioxide ($CO_2$), oxygen ($O_2$), and soot were presented as a function of mixture fraction and compared with state relationships based on the idealized reaction of hydrocarbon fuels. The mixture fraction analysis made it possible to rearrange hundreds of species measurements, which were done under various fire conditions and at two locations of the upper layer, in term of the unified parameter, i.e. the mixture fraction. The results also showed that inclusion of soot in the mixture fraction calculation could improve the performance of analysis, especially for the sooty fuels such as heptane and toluene.

Papers : Analysis of Supersonic Rocket Plume Flowfield with Finite - Rate Chemical Reactions (논문 : 유한속도 화학반응을 고려한 초음속 로켓의 플룸 유동장 해석)

  • Choe,Hwan-Seok;Mun,Yun-Wan;Choe,Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.114-123
    • /
    • 2002
  • A supersonic rocket plum flowfield of kerosene/liquid-oxygen based propulsion system has been analysed using the Reynolds-averaged Navier-Stokes equations coupled with a 9-species 14-reaction finite-chemistry model. The result were compared with chemically frozen flow solution to investigate the effect of finite-rate chemistry on the plume flowfield. The computations were performed using a commercial CFD software, FLUENT 5. The finite-rate chemistry solution exhibited higher temperature caused by the reactions within the nozzle. All the chemical reactions within the plum were dominated only in the shear layer and behind the barrel shock reflection region where the temperatures are high and the effect of finite-rate chemical reactions on the flowfield was found to be insignificant. However, the present plume computation including the finite-rate chemical reaction within the plume has revealed major reactions occurring in the plum and their reaction mechanisms.

Effects of Atmospheric Composition Substitution and Pressure on Soot Formation of Jet-A1 Droplet Flames (대기조성 치환 및 압력이 Jet A1 액적화염의 매연입자 생성에 미치는 영향에 관한 연구)

  • Nam, Won-Sik;Ryu, Myung-Ho;Lee, Jong Won;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.13-18
    • /
    • 2019
  • In this study, the soot formation characteristics of Jet-A1 liquid fuel droplet flames were investigated by measuring the soot concentration under atmospheric conditions similar to the working environment of the Korea Space Launch Vehicle (KSLV) To obtain the desired atmospheric conditions, the oxygen concentration in the combustion chamber was maintained at 30% and the pressure was varied between 0.1 and 0.06 MPa. The full-field light extinction technique was used to measure the concentration of soot particles generated by applying the identical to 2-mm-diameter Jet-A1 fuel droplets. The soot concentration of the Jet-A1 droplet flames was the highest in the nitrogen-substituted atmosphere and the lowest in the carbon dioxide-substituted atmosphere, despite the pressure. the pressure was decreased the measured soot concentrations reduced as a function of Pn.

Risk Assessment of Fire and Explosion of Methane (메탄의 화재 및 폭발 위험성 평가)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.2 s.27
    • /
    • pp.1-7
    • /
    • 2005
  • The thermochemical parameters for safe handling, storage, transport, operation and process design of flammable substances are explosive limit, flash point, autoignition temperature, minimum oxygen concentration, heat of combustion etc.. Explosive limit and autoignition temperature are the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosive limit and autoignition temperature of methane fur LNG process safety were investigated. By using the literatures data, the lower and upper explosive limits of methane recommended 4.8 vol$\%$ and 16 vol$\%$, respectively. Also autoignition temperatures of methane with ignition sources recommended $540^{\circ}C$ at the electrically heated cruicible furnace (the whole surface heating) and recommended about $1000^{\circ}C$ in the local hot surface. The new equations for predicting the temperature dependence and the pressure dependence of the lower explosive limits for methane are proposed. The values calculated by the proposed equations were a good agreement with the literature data.

  • PDF

Effects of Impellers and Floating Ring Seals on Performance of Centrifugal Pumps (임펠러 및 플로팅 링 실이 원심 펌프의 성능에 미치는 영향)

  • Kim, Dae-Jin;Choi, Chang-Ho;Hong, Soon-Sam;Kim, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1083-1088
    • /
    • 2011
  • The effects of an impeller and floating ring seals on the performance of centrifugal pumps are investigated on the basis of their test results using water. The pumps are single-staged centrifugal pumps developed for 30-ton- and 75-ton-class liquid rocket engines, and are components of a turbopump that supplies propellants (liquid oxidizer and kerosene) to the combustion chamber. The exit width of the impellers and the numbers and exit angles of the impeller blades are found to have influences on the pump heads. In addition, the pumps have different efficiencies according to the gaps between the floating ring seals and the impellers, whereas the pump size seems to have less effect on the efficiency.

Thermal and Chemical Quenching Phenomena in a Microscale Combustor (II)- Effects of Physical and Chemical Properties of SiOx(x≤2) Plates on flame Quenching - (마이크로 연소기에서 발생하는 열 소염과 화학 소염 현상 (II)- SiOx(x≤2) 플레이트의 물리, 화학적 성질이 소염에 미치는 영향 -)

  • Kim Kyu-Tae;Lee Dae-Hoon;Kwon Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.405-412
    • /
    • 2006
  • In order to realize a stably propagating flame in a narrow channel, flame instabilities resulting from flame-wall interaction should be avoided. In particular flame quenching is a significant issue in micro combustion devices; quenching is caused either by excessive heat loss or by active radical adsorptions at the wall. In this paper, the relative significance of thermal and chemical effects on flame quenching is examined by means of quenching distance measurement. Emphasis is placed on the effects of surface defect density on flame quenching. To investigate chemical quenching phenomenon, thermally grown silicon oxide plates with well-defined defect distribution were prepared. ion implantation technique was used to control defect density, i.e. the number of oxygen vacancies. It has been found that when the surface temperature is under $300^{\circ}C$, the quenching distance is decreased on account of reduced heat loss; as the surface temperature is increased over $300^{\circ}C$, however, quenching distance is increased despite reduced heat loss effect. Such abberant behavior is caused by heterogeneous surface reactions between active radicals and surface defects. The higher defect density, the larger quenching distance. This result means that chemical quenching is governed by radical adsorption that can be parameterized by oxygen vacancy density on the surface.

Flame-retarding effects depending on the number of phosphonate groups attached to phosphorus flame-retarding compounds and coating binder resins (인계 난연화합물 및 코팅 바인더 수지에 부착된 phosphonate group에 따른 난연효과)

  • Park, Hyo-Nam;Kim, Hae-Rim;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1678-1686
    • /
    • 2021
  • In this study, we prepared phosphorous flame-retarding coating solutions by mixing triphosphate (3 phosphonate), phytic acid (6 phosphonate), or ammonium polyphosphate (10 phosphonate) with boric acid as a crosslinking agent and acryl resin binder. Prepared phosphorous flame-retarding coating solutions were coated onto non-woven fabrics, respectively, to obtain high flame-retarding effects. These prepared flame-retardant non-woven fabrics were evaluated using smoke density standard test (ASTM E662), limit oxygen index standard test (ISO E622), and vertical burning standard test (UL 94). Their flame-retarding effects were affected by the number of phosphonate groups. Regardless of natural or synthetic binder resins, their effects showed the following order: ammonium polyphosphate > phytic acid > triphosphate. Natural hydrocarbon compounds were also examined to determine the possible retardancy of binder resins. Results showed that natural hydrocarbon binder resins could be used for preparing fire-retardant nonwoven fabrics.

Development of Program for Ignition Temperature and Its Applications (발화온도 산출 프로그램 개발 및 적용)

  • Park, Won-Hee;Cho, Youngmim;Kwon, Tae-Soom
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.4
    • /
    • pp.243-250
    • /
    • 2017
  • A fire phenomenon of a solid such as wood involves a phenomenon in which solid is heated from the outside and the gas generated through the thermal pyrolysis process of the material is burnt. The thermal pyrolysis phenomenon of the solid is a phenomenon in which the amount of energy incident from the outside, the amount of heat dissipation of the solid material, the heat transfer between the solid material and the surroundings including the amount of heat transfer to the air adjacent to the solid surface, and the fraction of oxygen in the air. In this paper, we calculate the required ignition temperature to simulate the fire phenomenon as simple as possible. By using cone calorimeter, the ignition time was measured by variously controlling the heat flux flowing into the wood specimen by using various wood specimens. The user friendly program is developed for calculation of the ignition temperature. Five different woods such as low density MDF, high density MDF, plywood, douglas fir and PB with various thickness are considered. The ignition temperatures suggested in this paper can be used for fire propagation analysis for woods.