• Title/Summary/Keyword: 산소/질소/아르곤 플라즈마 전처리

Search Result 4, Processing Time 0.019 seconds

Nucleation Enhancing Effect of Different ECR Plasmas Pretreatment in the RUO2 Film Growth by MOCVD (ECR플라즈마 전처리가 RuO2 MOCVD시 핵생성에 끼치는 효과)

  • Eom, Taejong;Park, Yunkyu;Lee, Chongmu
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.94-98
    • /
    • 2005
  • $RuO_2$ is widely studied as a lower electrode material for high dielectric capacitors in DRAM (Dynamic Random Access Memories) and FRAM (Ferroelectric Random Access Memories). In this study, the effects of hydrogen, oxygen, and argon Electron Cyclotron Resonance (ECR) plasma pretreatments on deposited by Metal Organic Chemical Vapor Deposition (MOCVD) $RuO_2$ nucleation was investigated using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM) analyses. Argon ECR plasma pretreatment was found to offer the highest $RuO_2$ nucleation density among these three pretreatments. The mechanism through which $RuO_2$ nucleation is enhanced by ECR plasma pretreatment may be that the argon or the hydrogen ECR plasma removes nitrogen and oxygen atoms at the TiN film surface so that the underlying TiN film surface is changed to Ti-rich TiN.

Effect of Plasma Treatment with O2, Ar, and N2 Gas on Porous TiO2 for Improving Energy Conversion Efficiency of DSSC (Dye Sensitized Solar Cell)

  • Gang, Go-Ru;Sim, Seop;Cha, Deok-Jun;Kim, Jin-Tae;Yun, Ju-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.202-202
    • /
    • 2012
  • 염료감응태양전지(DSSC)의 광변환 효율을 향상시키기 위하여 진공챔버에서 450도 고온에서 O2, Ar, and N2 혼합가스를 주입하여 다양한 plasma로 TiO2 박막을 처리하면서 소성시켰다. TiO2 표면을 cleaning하고 활성화함으로서 염료의 결합력을 향상시키는 것 외에 TiO2 내부의 oxygen vacancy를 변화를 관찰하였다. 실험에 사용한 박막은 glass 위에 FTO 박막을 입히고, 다공성 TiO2 나노입자 박막을 코팅하여 제조하였다(porous TiO2 나노입자(${\sim}12{\mu}m$)/FTO(Fluorine doped Tin oxide; $1{\mu}m$)/glass). 완성된 광전극에 대해서 XRD, XPS, EIS, FE-SEM 등을 이용하여 분석하였다. 또한 이렇게 전처리된 광전극을 사용한 DSSC를 제작하였다. 그리고 Solar-simulator를 통해 그 효율을 측정하여 '플라즈마환경에서 소성된 광전극에 대한 DSSC의 광변환효율에 미치는 효과'을 고찰하였다.

  • PDF

Surface Modification of Polymeric Material Using Atmospheric Plasma (대기압 플라즈마를 이용한 고분자 소재의 표면개질)

  • Sim, Dong-Hyun;Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.433-439
    • /
    • 2008
  • An atmospheric plasma pre-treatment method was applied to polyurethane foam (density: 0.27) and rubber (butadiene rubber) to improve its contact angle and adhesion using atmospheric plate type reactor. In order to investigate the optimum reaction condition of plasma treatment, type of treatment gas (nitrogen, argon, oxygen, air), rate of gas flow ($30{\sim}100\;mL/min$), and treated time ($0{\sim}30\;s$) were examined in a plate plasma reactor. The result of the surface modification with respect to the treatment procedure was characterized by using SEM and ATR-FTIR. Due to a decrease of the contact angle of various materials, the greatest adhesion strength was achieved at optimum condition such as flow rate of 100 mL/min, reaction time of polyurethane foam 10 s and rubber 3 s for an atmosphere nitrogen gas. Consequently, the atmospheric plasma treatment reduced the wettability of the polyurethane foam and rubber also resulted in the improvement of the adhesion.

Adhesion Enhancement of Polyurethane Foam Using Atmospheric Plasma (II) (대기압 플라즈마를 이용한 폴리우레탄 소재의 접착력 향상 (II))

  • Sim, Dong Hyun;Seul, Soo Duk;Oh, Sang Taek
    • Journal of Adhesion and Interface
    • /
    • v.8 no.3
    • /
    • pp.1-8
    • /
    • 2007
  • An atmospheric plasma pre-treatment method was applied to polyurethane foam to improve its contact angle and adhesion. In order to investigate the optimum reaction condition of plasma treatment, type of reaction gas (nitrogen, argon, oxygen, air), rate of gas flow (30~150 mL/min), and reaction time (0~30 sec) were examined in a plate plasma reactor. Also, the effects were compared to those of a conventional vacuum plasma pre-treatment system. The result of the surface modification with respect to the treatment procedure was characterized by using SEM and ATR-FTIR. Due to a decrease of the contact angle of polyurethane foam, the greatest adhesion strength was achieved at a flow rate of 100 mL/min and at a reaction time of 10s for N2 gas. Consequently, the atmospheric plasma treatment reduced the contact angle of the polyurethane foam and also resulted in the improvement of the peel strength.

  • PDF