• Title/Summary/Keyword: 산림자원관리

Search Result 318, Processing Time 0.026 seconds

Prediction Model of Pine Forests' Distribution Change according to Climate Change (기후변화에 따른 소나무림 분포변화 예측모델)

  • Kim, Tae-Geun;Cho, Youngho;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.229-237
    • /
    • 2015
  • This study aims to offer basic data to effectively preserve and manage pine forests using more precise pine forests' distribution status. In this regard, this study predicts the geographical distribution change of pine forests growing in South Korea, due to climate change, and evaluates the spatial distribution characteristics of pine forests by age. To this end, this study predicts the potential distribution change of pine forests by applying the MaxEnt model useful for species distribution change to the present and future climate change scenarios, and analyzes the effects of bioclimatic variables on the distribution area and change by age. Concerning the potential distribution regions of pine forests, the pine forests, aged 10 to 30 years in South Korea, relatively decreased more. As the area of the region suitable for pine forest by age was bigger, the decreased regions tend to become bigger, and the expanded regions tend to become smaller. Such phenomena is conjectured to be derived from changing of the interaction of pine forests by age from mutual promotional relations to competitive relations in the similar climate environment, while the regions suitable for pine forests' growth are mostly overlap regions. This study has found that precipitation affects more on the distribution of pine forests, compared to temperature change, and that pine trees' geographical distribution change is more affected by climate's extremities including precipitation of driest season and temperature of the coldest season than average climate characteristics. Especially, the effects of precipitation during the driest season on the distribution change of pine forests are irrelevant of pine forest's age class. Such results are expected to result in a reduction of the pine forest as the regions with the increase of moisture deficiency, where climate environment influencing growth and physiological responses related with drought is shaped, gradually increase according to future temperature rise. The findings in this study can be applied as a useful method for the prediction of geographical change according to climate change by using various biological resources information already accumulated. In addition, those findings are expected to be utilized as basic data for the establishment of climate change adaptation policies related to forest vegetation preservation in the natural ecosystem field.

Community Distribution on Mountain Forest Vegetation of the Hwangjangsan Area in the Worak National Park, Korea (월악산국립공원 황장산 일대 삼림식생의 군락분포에 관한 연구)

  • Lee, Jung-Yun;Oh, Jang-Geun;Jung, Se-Hoon;Kim, Ha-Song
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.203-211
    • /
    • 2015
  • Forest vegetation of Hwangjangsan (1,077.3 m) in Woraksan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, riparian forest, afforestation and other vegetation. Including 55 communities of mountain forest vegetation and 4 communities of other vegetation, the total of 59 communities were researched; mountain forest vegetation classified by physiognomy classification are 28 communities deciduous broad-leaved forest, 12 communities of mountain valley forest, 3 communities of coniferous forests, 2 communities of riparian forest, 10 afforestation and 4 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica and Quercus variabilis communities account for 65.928 percent of deciduous broad leaved forest, Fraxinus rhynchophylla - Quercus mongolica community takes up 41.459 percent of mountain valley forest, Pinus densiflora community holds 86.100 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Pinus densiflora, Quercus variabilis, Fraxinus rhynchophylla, and Quercus serrata are distributed as dominant species of the uppermost part in a forest vegetation region in Woraksan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Quercus variabilis, and Fraxinus rhynchophylla which are climax species in the area.

Vertical Distribution of Vascular Plant Species along an Elevational Gradients in the Gyebangsan Area of Odaesan National Park (오대산국립공원 계방산지구 관속식물의 고도별 수직분포)

  • An, Ji-Hong;Park, Hwan-Jun;Nam, Gi-Heum;Lee, Byoung-Yoon;Park, Chan-Ho;Kim, Jung-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.381-402
    • /
    • 2017
  • In order to investigate distribution of vascular plants along elevational gradient in the Nodong valley of Gyebangsan, vascular plants of eight sections with 100-meter-high were surveyed from the Auto-camping site (800 m) to the top of a mountain (1,577 m). There were a total of 382 taxa: 89 families, 234 genera, 339 species, 7 subspecies, 34 varieties, and 2 forms. As a result of analyzing the pattern of species richness, it showed a reversed hump-shaped with minimum richness at mid-high elevation. As a result of analyzing habitat affinity types, the proportion of forest species increased with increasing elevation. But, the ruderal species decreased with increasing elevation, and then increased at the top of a mountain. As for the proportion of life forms, the annual herbs gradually decreased with increasing elevation, but it did not appear between 1,300 m and 1,500 m and then increased at the top of a mountain. The trees gradually increased with elevation and decreased from 1,300~1,400 m. The vascular plants divided into four groups by using DCA. The arrangement of each stands was arranged in order from right to left on the I axis according to the elevation. The distribution of vascular plants is determined by their own optimal ranges of vegetation. Also, rise in temperature due to climate change affects the distribution of vascular plants, composition, and diversity. Therefore, continuous monitoring is necessary to confirm ecological and environmental characteristics of vegetation, distribution ranges, changes of habitat. Furthermore, plans for conservation and management based on these data should be prepared according to climate change.

Community Distribution on Mountain Forest Vegetation of the Geumsusan and Doraksan Area in the Worak National Park, Korea (월악산국립공원 금수산 및 도락산 일대 삼림식생의 군락분포에 관한 연구)

  • Lee, Jung-Yun;Oh, Jang-Geun;Jung, Se-Hoon;Kim, Ha-Song
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.129-138
    • /
    • 2015
  • Forest vegetation of Geumsusan (1,016.0 m) and Doraksan (964.4 m) in Woraksan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, riparian forest, afforestation and other vegetation. Including 77 communities of mountain forest vegetation and 5 communities of other vegetation, the total of 82 communities were researched; mountain forest vegetation classified by physiognomy classification are 37 communities deciduous broad-leaved forest, 16 communities of mountain valley forest, 8 communities of coniferous forests, 1 community of riparian forest, 15 afforestation and 5 other vegetation. As for the distribution rate for surveyed main communities, Quercus variabilis and Quercus mongolica communities account for 33.031 percent of deciduous broadleaved forest, Cornus controversa community takes up 29.142 percent of mountain valley forest, Pinus densiflora community holds 64.477 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus variabilis, Quercus mongolica, Pinus densiflora, Quercus serrata and Cornus controversa are distributed as dominant species of the uppermost part in a forest vegetation region in Woraksan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus variabilis, Quercus mongolica, Cornus controversa and Fraxinus mandshurica which are climax species in the area.

Vegetation Characteristics of Ridge in the Seonunsan Provincial Park (선운산도립공원의 능선부 식생 특성)

  • Kang, Hyun-Mi;Park, Seok-Gon;Kim, Ji-Suk;Lee, Sang-Cheol;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.1
    • /
    • pp.75-85
    • /
    • 2019
  • The purpose of this study is to understand the vegetation characteristics of ridges (Gyeongsusan-Seonunsan-Gaeipalsan) in the Seonunsan Provincial Park and to establish reference information for the management of the park in the future. We designated 62 plots with the area of $100m^2$ were installed and analyzed them to investigate the vegetation characteristics. The results of community classification based on TWINSPAN showed seven categories of vegetation communities in the surveyed region: Quercus dentata-Deciduous broad-leaved Community, Quercus variabilis-Pinus thunbergii-Quercus serrata Community, Pinus densiflora Community, Deciduous broad-leaved Community-I, Carpinus tschonoskii-Castanea crenata-Quercus aliena Community, Deciduous broad-leaved Community-II, and Carpinus tschonoskii-Carpinus laxiflora Community. In the vegetation of Seonunsan Provincial Park, coniferous trees such as Pinus thunbergii and Pinus densiflora have been gradually losing their population as part of ecological succession to deciduous broad-leaved trees such as Quercus spp., Carpinus tschonoskii, and Carpinus laxiflora. Moreover, Carpinus turczaninowii, Mallotus japonicus, and others were identified as vegetation reflecting the geographical characteristics of the region neighboring the west coast. The estimated age is 30-60 years, and the oldest tree Pinus densiflora is 63-years old. The index of diversity ($100m^2$) was 0.7942 for Carpinus tschonoskii-Carpinus laxiflora Community, 0.8406 for Carpinus tschonoskii-Castanea crenata-Quercus aliena Community, 0.8543 for Quercus dentata-Deciduous broad-leaved Community, 0.9434 for Quercus variabilis-Pinus thunbergii-Quercus serrata Community, 0.9520 for Deciduous broad-leaved Community-I, 0.9633 for Pinus densiflora Community, and 1.0340 for Deciduous broad-leaved Community-II in the ascending order.

Potential Habitat Area Based on Natural Environment Survey Time Series Data for Conservation of Otter (Lutra lutra) - Case Study for Gangwon-do - (수달의 보전을 위한 전국자연환경조사 시계열 자료 기반 잠재 서식적합지역 분석 - 강원도를 대상으로 -)

  • Kim, Ho Gul;Mo, Yongwon
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.1
    • /
    • pp.24-36
    • /
    • 2021
  • Countries around the world, including the Republic of Korea, are participating in efforts to preserve biodiversity. Concerning species, in particular, studies that aim to find potential habitats and establish conservation plans by conducting habitat suitability analysis for specific species are actively ongoing. However, few studies on mid- to long-term changes in suitable habitat areas are based on accumulated information. Therefore, this study aimed to analyze the time-series changes in the habitat suitable area and examine the otters' changing pattern (Lutra lutra) designated as Level 1 endangered wildlife in Gangwon-do. The time-series change analysis used the data on otter species' presence points from the 2nd, 3rd, and 4th national natural environment surveys conducted for about 20 years. Moreover, it utilized the land cover map consistent with the survey period to create environmental variables to reflect each survey period's habitat environment. The suitable habitat area analysis used the MaxEnt model that can run based only on the species presence information, and it has been proven to be reliable by previous studies. The study derived the habitat suitability map for otters in each survey period, and it showed a tendency that habitats were distributed around rivers. Comparing the response curves of the environmental variables derived from the modeling identified the characteristics of the habitat favored by otters. The examination of habitats' change by survey period showed that the habitats based on the 2nd National Natural Environment Survey had the widest distribution. The habitats of the 3rd and 4th surveys showed a tendency of decrease in area. Moreover, the study aggregated the analysis results of the three survey periods and analyzed and categorized the habitat's changing pattern. The type of change proposed different conservation plans, such as field surveys, monitoring, protected area establishment, and restoration plan. This study is significant because it produced a comprehensive analysis map that showed the time-series changes of the location and area of the otter habitat and proposed a conservation plan that is necessary according to the type of habitat change by region. We believe that the method proposed in this study and its results can be used as reference data for establishing a habitat conservation and management plan in the future.

Effects of Climatic Factors on the Nationwide Distribution of Wild Aculeata (Insecta: Hymenoptera) (전국 야생 벌목 분포에 대한 기후요인 영향 연구)

  • Yu, Dong-Su;Kwon, Oh-Chang;Shin, Man-Seok;Kim, Jung-Kyu;Lee, Sang-Hun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.3
    • /
    • pp.303-317
    • /
    • 2022
  • Climate change caused by increased greenhouse gas emissions can alter the natural ecosystem, including the pollination ecosystem and agricultural ecology, which are ecological interactions between potted insects and plants. Many studies have reported that populations of wild bees, including bees and wasps (BW), which are the key pollinators, have gradually declined due to climate change, leading to adverse impacts on overall biodiversity, ultimately with agribusinesses and the life cycle of flowering plants. Therefore, we could infer that the rising temperature in Korean Peninsula (South Korea) due to global warming has led to climate change and influenced the wild bee's ecosystem. In this study, we surveyed the distributional pattern of BW (Superfamily: Apoidea, Vespoidea, and Chrysidoidea) at 51 sites from 2017 (37 sites) to 2018 (14 sites) to examine the effects of climatic factors on the nationwide distribution of BW in South Korea. Previous literature has confirmed that their distribution according to forest climate zones is significantly correlated with mean and accumulative temperatures. Based on the result, we predicted the effects of future climate changes on the BW distribution that appeared throughout South Korea and the species that appeared in specific climate zones using Shared Socioeconomic Pathways (SSPs). The distributions of wild BW predicted by the SSP scenarios 2-4.5 and 5-8.5 according to the BIOMOD species distribution model revealed that common and endemic species will shift northward from the current habitat distribution by 2050 and 2100, respectively. Our study implies that climate change and its detrimental effect on the ecosystem is ongoing as the BW distribution in South Korea can change, causing the change in the ecosystem in the Korean Peninsula. Therefore, immediate efforts to mitigate greenhouse gas emissions are warranted. We hope the findings of this study can inspire further research on the effects of climate change on pollination services and serve as the reference for making agricultural policy and BW conservation strategy

Analysis of Change in Flora and Vegetation in the Research Sites before and after the Forest Road Construction in Minjujisan in Korea - Focused on the Forest Road at Jeollabuk-do Muju-gun Seolcheon-myeon Micheon-ri Minjujisan Area - (임도 개설 전·후 식물상 및 식생 변화 분석 - 전북 무주군 설천면 미천리 민주지산 임도를 중심으로 -)

  • Hyoun-Sook Kim;Joon-Woo Lee;Sang-Myong Lee
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.5
    • /
    • pp.367-391
    • /
    • 2023
  • This study was conducted for 10 years from 2012, which is a year before the forest road construction in Minjujisan, to 2022 to analyze annual changes in flora and vegetation before and after the forest road construction and to provide strategies for management. The plant communities in the research sites along the forest road showed the differentiation between slopes with Quercus mongolica community on the northwestern slope and Quercus variabilis and Larix kaempferi communities on the southwestern slope. A total of 212 taxa have increased for number 7 between before and after the construction from a total of 66 taxa (44 families, 59 genera, 51 species, 13 varieties, and 2 forma) in 2012 and 207 taxa (71 families, 153 genera, 176 species, 27 varieties, and 4 forma) in 2015 to 278 taxa (78 families, 172 genera, 242 species, 1 subspecies, 31 varieties, and 4 forma) in 2022. It is noteworthy that the vegetation cover and the introduction of new taxa had been expanded in the sites adjacent to the construction, which is likely caused by the significantly increased amount of light and the introduction of annual herbaceous and naturalized plants after the construction. The results of 10 years of current study reveal that the vegetation cover and the number of new taxa had rapidly increased in earlier years after the construction, slowly decreased later on, and finally formed a stable forest with the increase in the ratio of dominant species. The vegetation cover of the herbaceous layer immediately increased on the slopes along the forest road for a few years after the construction although it had continuously decreased while that of the shrub layer quickly increased. It was shown that on the hillslope the vegetation cover of tall- and low-tree layers increased whereas that of herbaceous and shrub layers rapidly decreased.