• Title/Summary/Keyword: 산림골재

Search Result 30, Processing Time 0.028 seconds

Aggregate of Korea in 2022 (2022년 한국의 골재)

  • Sei Sun Hong;Jin Young Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.871-885
    • /
    • 2023
  • In 2022, the total of 129 million m3 of aggregate was produced in Korea, a slightly decrease from the total production of 2021. Of these, about 44 million m3 of sand and about 84 million m3 of gravel were produced. About 41% of total quantity of aggregates were produced by permission and the rest were produced after declaration. It estimated that of the 129 million m3 of aggregates in Korea in 2022, about 54.9% was produced by screening crushed aggregate, by 32.8% by forest aggregate, 2.2% by land aggregate, 6.2% by marine aggregate and 3.1% by washing aggregate, and 0.3% by river aggregate. This indicates that screening crushed and forest aggregate are the main producers of domestic aggregate in 2022. Leading producing metropolitan governments were Gyeonggi-do, Gyeongsangnam-do, Chungcheongnam-do, Incheon, Jeollanam-do, Chungcheongbuk-do, Gangwon-do, Gyeongsangbuk-do in order decreasing volume. In 2022, aggregates were produced in 147 local governments, and the 10 leading producing local governments were, in descending order of volume, Hwaseong, Pocheon, Paju, Ongjin, Youngin, Gwangju, west EEZ, Incheon Seo-gu, Namyangju, Asan. The combined production of the 10 leading local governments accounted for 31% of the national total. And 44 local governments have produced aggregates of more than 1 million m3 each other. In 148 local governments that produced aggregate, a total of 800 active operations produced aggregate with 350 operations by river, land and forest aggregate, 450 operations by selective crushed and washing aggregate.

Trends of Supply and Demand of Aggregate in Korea (I) (국내 골재자원의 수급현황(I))

  • Hong, Sei Sun;Kim, Ju Yong;Lee, Jin Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.253-272
    • /
    • 2015
  • The necessity of aggregate resources in Korea has been increased with a rapid economic growth since the 1990s. Construction activities have been increased drastically for last two decades. Such economic activities are much concentrated at big cities in Korea, and recently new neighbouring cities, such as multifunctional administrative city, enterprise city and innocity, are under construction at the surroundings of the cities. This new urbanization asked for an appropriate supply of raw construction materials such as cement, sands and gravels. The aim of this study is to understand and discuss the analysis and prospect of supply and demand of domestic sand and gravel. On the early years, 1990s, about 25% of the total consumption of these sands and gravels comes from riverine deposits; 20% to 25% from marine sands, 40% to 45% from forest rocks and the rest 5% to 15% from old fluvial deposits and crushed rocks. But nowaday the river aggregate, including both sands and gravels of a present river channel and those of the old fluviatile system are decreasing, while the crushed and forest aggregates and marine sand are now the main source of infrastructure resources. Thus it is increasingly necessary to investigate the forest and crushed aggregate resources potential in Korea where a current analysis indicate that the supply of riverine aggregates gradually decreases.

Evaluation for Predicting Acid-forming Potential of Domestic Forest Aggregate Samples (국내 산림골재 시료의 산성암석배수 발생 가능성 예측 평가)

  • Yim, Gil-Jae;Jang, Jeong-Yun;Cho, Dong-Wan;Ji, Sangwoo;Cheong, Young-Wook;Hong, Sei-Sun;Lee, Jin-Young
    • Economic and Environmental Geology
    • /
    • v.54 no.5
    • /
    • pp.561-572
    • /
    • 2021
  • Aggregate collection is taking place in many areas in Korea, resulting in large cut slopes or large amounts of cut rocks. If the development site for such aggregate collection is a stratum accompanied by sulfide minerals, Acid Rock Drainage (ARD) may occur, which may cause environmental pollution in the development site and surrounding areas. As a result of the study on forest aggregate samples, most of the samples were classified as acid-forming potential samples, and among them, some samples from Gwangju, Goyang, and Sokcho were classified as potential acid-generating samples. This can be expected to affect the quality of aggregates when a large amount of aggregate is used in the future. Therefore, it is judged that these forest aggregates need to be managed when they are used. By predicting the occurrence of ARD through the acid-generating ability test, it is expected that economic losses that may occur in the future can be reduced, and it is judged that the problem of surrounding environmental pollution can be further alleviated.

Study on the Trend of Aggregate Industry (국내외 골재산업 동향 연구)

  • Kwang-Seok Chea;Namin Koo;Young Geun Lee;Hee Moon Yang;Ki Hyung Park
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.135-145
    • /
    • 2023
  • Aggregate is used to produce stable materials like concrete and asphalt and is fundamental to meet the social needs of housing, industry, road, energy and health. A total of 42.35 billion tons of aggregate were produced in 2021 worldwide, an increase of 0.91% compared to the previous year. Among them, 2 billion tons were produced in China, India, European Union and United States, making up to 71.75% of the share. South Korea has witnessed a constant increase in aggregate production, overtaking Mexico and Japan for seventh place with 390 million tons and 0.85% of the share. The industrial sand and gravel produced globally amounted to 352.66 million tons. The top seven countries with the highest production were China, United States, Netherlands, Italy, India, Turkey and France, and their production exceeded 10 million tons and held a share of 74.69%. Exports of natural rock recorded $21.68 billion in 2021, increased by $2.3 billion compared to the previous year, while exports of artificial rock increased by $2.66 billion to $13.59 billion. Exports of sand reached $1.71 billion with United States, Netherlands, Germany and Belgium being the four countries with the highest exports of sand. The four countries exported more than $100 million in sand and took up 57.70% of the total amount. Exports of gravel totaled $2.75 billion, with China, Norway, Germany, Belgium, France and Austria in the lead, making up to 48.30% of the total share. The aggregate quarry started to surge in the 1950s due to the change in people's lifestyle such as population growth, urbanization and infrastructure delvelopment. Demand for aggregate is also skyrocketing to prevent land reclamation and flood caused by sea-level rise. Demand for aggregate, which was around 24 gigatons in 2011, is expected to double to 55 gigatons in 2060. However, it is likely that aggregate extraction will heavily damage the ecosystem and the world will eventually face a shortage of aggregate followed by tense social conflict.

Study on the Strategy for Managing Aggregate Supply and Demand in Gyeongsangbuk-do, South Korea (경상북도 골재수요-공급 관리 전략 연구)

  • Jin-Young Lee;Sei Sun Hong;Chul Seoung Baek
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.161-175
    • /
    • 2024
  • Aggregate typically refers to sand and gravel formed by the transportation of rocks in rivers or artificially crushed, constituting a core resource in the construction industry. Gyeongsangbuk-do, the largest administrative area in South Korea, produces various sources of gravel, including forest, land (excluding other sources), river, and crushed stone. As of 2022, it has extracted approximately 6.96 million cubic meters of aggregate, with permitted production totaling around 4.07 million cubic meters and reported production of about 2.88 million cubic meters. The aggregate demand in Gyeongsangbuk-do is estimated to be 12.39 million cubic meters according to the estimation method in Ready-Mix Concrete. From the supply perspective, about 120 extraction sites are operational, with most municipalities maintaining an appropriate balance between aggregate demand and supply. However, in some areas, there is inbound and outbound transportation of aggregate to neighboring regions. Regions with significant inbound and outbound aggregate transportation in Gyeongsangbuk-do are areas connected to Daegu Metropolitan City and Pohang City along the Gyeongbu rail line, showing a high correlation with population distribution. Gyeongsangbuk-do faces challenges such as population decline, aging rural areas, and insufficient balanced regional development. Analysis using GIS reveals these trends in gravel demand and supply. Currently in this study, Gyeongsangbuk-do meets its demand for aggregate through the supply of various aggregate sources, maintaining stable aggregate procurement. River and terrestrial aggregates may be sustained as short-term supply strategies due to the difficulty of longterm development. Considering the reliance on raw material supply for selective crushing, it suggests the need for raw material management to maintain stability. Gyeongsangbuk-do highlights quarries in the forest as an important resource for sustainable aggregate supply, advocating for the development of large-scale aggregate quarries as a long-term alternative. These research findings are expected to provide valuable insights for formulating strategies for sustainable management and stable utilization of aggregate resources.

암석재료

  • 정교철;오대여;김주용
    • Proceedings of the KSEG Conference
    • /
    • 2004.03a
    • /
    • pp.25001-25035
    • /
    • 2004
  • 석재의 무분별한 개발로 인한 산림훼손을 최소화하고 상품성 있는 석재 가능성을 확인하기 위하여 채석허가 이전에 지질조사 및 시추탐사를 통한 매장량과 경제성 등 채석타당성을 평가하는 것이 필요하다. 골재가 부존하는 충적층은 다양한 입도와 지층 단면을 가지고 있기 때문에 이를 대상으로 골재를 채취하려면 골재의 품질과 매장량을 확인해야 한다. 또한 무분별한 골재 채취는 홍수시 유량과 유속을 변경시키므로 합리적인 채취량을 추산할 필요가 있다. (중략)

  • PDF

An Experimental Study on the Characteristics of Crushed Aggregate Using Quarry-Waste (석산폐석을 활용한 쇄석골재의 특성에 관한 시험적 연구)

  • 김경수;송기범
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.167-176
    • /
    • 1998
  • 골재의수요는 매년 크게 증가하고 있으나 천연골재는 점차 고갈되어 가고 있다. 따라서 기존석산들에서 발생되는 폐석자원을 쇄석골재로 활용하면 일거양득의 효과가 있다. 본 연구는 국내에서 가장 대규모 석산단지인 포천 및 익산지역 기존석산에서 발생되는 석산폐석에 대한 물리적, 화학적 및 광물학적 시험.분석을 실시하여, 쇄석골재로서 석산폐석의 특성규명과 활용가능성을 평가하였다. 연구결과, 포천과 익산지역에서 발생되는 석산폐석을 쇄석골재로 활용할 수 있을 것으로 판단되었으며, 폐석자원을 쇄석골재로 활용함으로써 골재의 수요에 보충하고, 산림 및 자연경관의 훼손과 환경오염을 야기할 수 있는 석산골재 신규개발의 억제에도 효과가 기대된다.

Physical Characterization of Domestic Aggregate (국내 골재의 물리적 특성 분석)

  • Junyoung Ko;Eungyu Park;Junghae Choi;Jong-Tae Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.169-187
    • /
    • 2023
  • Aggregates from 84 cities and counties in Korea were tested for quality to allow analysis of the physical characteristics of aggregates from river, land, and forest environments. River and land aggregates were analyzed for 18 test items, and forest aggregates for 12 test items. They were classified according to watershed and geology, respectively. The observed physical characteristics of the river aggregates by basin were as follows: aggregates from the Geum River basin passed through 2.5, 1.2, 0.6, 0.3, 0.15, and 0.08 mm sieves; clay lumps constituted the Nakdong River basin material; aggregates from the Seomjin River basin passed through 10, 5, and 2.5 mm sieves; those from the Youngsang River basin passed through 1.2, 0.6, 0.3, 0.15, and 0.08 mm sieves; and aggregates from the Han River basin passed through 10, 5, 2.5, 1.2, 0.6, 0.3, and 0.08 mm sieves, Stability; Standard errors were analyzed for the average amount passing through 10, 0.6, and 0.08 mm silver sieves, and performance rate showed different distribution patterns from other physical characteristics. Analysis of variance found that 16 of the 18 items, excluding the absorption rate and the performance rate, had statistically significant differences in their averages by region. Considering land aggregates by basin, those from the Nakdong River basin excluding the Geum River basin had clay lumps, those from the Seomjin River basin had 10 and 5 mm sieve passage, aggregates from the Youngsang River basin had 0.08 mm sieve passage, and those from the Han River basin had 10, 0.6, and 0.08 mm sieve passage. The standard error of the mean of the quantity showed a different distribution pattern from the other physical characteristics. Analysis of variance found a statistically significant difference in the average of all 18 items by region. Analyzing forest aggregates by geology showed distributions of porosity patterns different from those of other physical characteristics in metamorphic rocks (but not igneous rocks), and distributions of wear rate and porosity were different from those of sedimentary rocks. There were statistically significant differences in the average volume mass, water absorption rate, wear rate, and Sc/Rc items by lipid.

A Fundamental Study on the Potential of Alkali-Aggregate Reaction according to KS F 2545 and ASTM C 1260 Test Methods (KS F 2545와 ASTM C 1260 시험법에 따른 알칼리골재 잠재가능성에 관한 연구)

  • Baek, Chul-Seoung;Seo, Jun-Hyung;Kim, Young-Jin;Cho, Kye-Hong;Kim, Kun-Ki;Lee, Jin-Young
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.18-27
    • /
    • 2020
  • Chemical experiment KS F 2545 and Physical experiment ASTM C 1260 has been accomplished to estimate the potential of alkali aggregate. Used for testing aggregate samples are forest aggregate and recycled aggregate which collected in Gangwon province Samcheok and Pyeongchang, Jeollabuk province Gimje and Kochang, and Gyeongsangnam province Goryeong. As the results of chemical experiment confirmed that if silicate rock and carbonate rock are mixed, reduction in alkalinity is increase. So it has been identified that case makes a disturb at the result of alkali aggregate reaction. In 9 out of the 62 aggregate samples check dissolved silica exceeding 100 mmol/ℓ. and mortar bar length increase rate confirmed that 5 of 9 chemical method aggregates were 0.1~0.2% and 2 aggregates were 0.2%. As a result of the alkaline aggregate reaction test using the chemical method and the mortar bar method, the aggregates showing alkali aggregate reaction are sandstone and tuff aggregates. Therefore, Alkali aggregate reaction tests are required to use clastic sedimentary rocks and volcanic pyroclastic rocks aggregates.