• Title/Summary/Keyword: 사출성형 시뮬레이션

Search Result 51, Processing Time 0.032 seconds

Molding Analysis for the Production of Large Sun Visors in Vehicles (차량용 대형 선바이저 생산을 위한 성형해석)

  • Park, Jong-Nam;Noh, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.610-615
    • /
    • 2016
  • Diverse accessories are used in automobiles, such as navigation systems, front and rear cameras, spoilers, and sun visors. Sun visors block sunlight so that drivers can drive safely with a better view, and they are used in many automobile designs. However, when large plastic products are manufactured using injection molding, there are many difficulties that develop, like weld lines, short shots, flow marks, imperfections, and distortion. In this study, a CAE simulation was conducted based on previous results to predict potential problems in the injection molding of large products. The flow characteristics up to complete charge for the melting resins were captured using a computer-aided engineering simulation. The temperature departure on the front part of a flow was about $10^{\circ}C$ and very stable. The practical ejecting time of the cold runner was about 70 seconds in the simulation. Finally, the capability of a suitable injection machine was calculated and recommended by prediction of the injection pressure and the die clamping force.

A study on the Injection Molding Process of the Case of Drum Type Washer using Moldflow (Moldflow를 이용한 드럼세탁기 케이스의 사출성형공정에 관한 연구)

  • Park, Chul-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.90-96
    • /
    • 2009
  • Injection molding process is one of the most important methods to produce plastic parts with high efficiency and low cost. Today, injection molded parts have been increased dramatically the demand for high strength and quality applications. This report investigates that the optimum injection molding condition for minimum of shrinkage. Molding shrinkage is occurred by several reasons such as thermal shrinkage, a hardening process and compressibility. This report concentrate on shrinkage by a hardening process. As Change a holding pressure and holding time, checked deflections of X, Y, Z directions by shrinkage based on same condition. In conclusion, it was found that holding pressure is stronger and holding time is longer, the deflection by shrinkage is smaller because injection molding needs enough time for cooling and high density. The FEM Simulation CAE tool. Moldflow, is used for the analysis of injection molding process.

A Study on the Injection Molding Process for Manufacturing of Alternator Pulley (얼터네이터 풀리의 제조를 위한 사출성형공정에 관한 연구)

  • 민병현;김영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.159-165
    • /
    • 2002
  • So far, an alternator pulley has been formed by cold forging and casting with a metal due to the necessity of its high strength. Various advantages such as the light weight, the low cost, and the high productivity can be obtained by the injection molding process using engineering plastics. Engineering plastics have an excellent performance in the characteristics off strength vs. weight, a good forming ability and a productivity. The object of this study is to develop an alternator pulley, which has been made with a metal, using the injection molding process based on Taguchi methods. A sink mark is considered as a characteristic parameter to improve the quality. The FEM Simulation CAE tool, Moldflow, is used for the analysis of injection molding process.

A Study on the Improvement of Injection Molding Process Using CAE and Decision-tree (CAE와 Decision-tree를 이용한 사출성형 공정개선에 관한 연구)

  • Hwang, Soonhwan;Han, Seong-Ryeol;Lee, Hoojin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.580-586
    • /
    • 2021
  • The CAT methodology is a numerical analysis technique using CAE. Recently, a methodology of applying artificial intelligence techniques to a simulation has been studied. A previous study compared the deformation results according to the injection molding process using a machine learning technique. Although MLP has excellent prediction performance, it lacks an explanation of the decision process and is like a black box. In this study, data was generated using Autodesk Moldflow 2018, an injection molding analysis software. Several Machine Learning Algorithms models were developed using RapidMiner version 9.5, a machine learning platform software, and the root mean square error was compared. The decision-tree showed better prediction performance than other machine learning techniques with the RMSE values. The classification criterion can be increased according to the Maximal Depth that determines the size of the Decision-tree, but the complexity also increases. The simulation showed that by selecting an intermediate value that satisfies the constraint based on the changed position, there was 7.7% improvement compared to the previous simulation.

A Study on Decision of gate location for Injection molding of Automobile air cleaner Upper cover (자동차용 에어클리너 상부커버 사출성형에서 게이트의 위치 결정)

  • Jang, Sung-Min;Kim, In-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4411-4417
    • /
    • 2015
  • The proper design of the gate location for injection molding of plastic goods is obtained from three-dimensional injection molding analysis for various design alternatives. This paper is study on effect of gate location in injection molding. It have a decisive impact on productivity and quality of plastic goods. This objectives of this paper is to analysis effect of hot runner gate location for resin filling, weld line, injection pressure to manufacture of automobile air cleaner upper case with injection molding machine. Thus, to analysis these problems in this paper, location of gate are gave variety in 4 CASEs. In this paper, the CAE simulation considering each variations in location of gate is performed to predict the cause of faulty which appears in the injection molding process.

Dimensional Optimization of Electric Component in Ultra Thin-wall Injection Molding by Using Moldflow Simulation (초박육 사출성형에서 Moldflow 시뮬레이션을 활용한 전자부품의 형상 최적화)

  • Lee, Jung-Hee;Bae, Hyun-Sun;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.1-6
    • /
    • 2020
  • Micro-structure components applied to various disciplines are steadily demanded with lighter weight and better quality. This is because that ultra thin-wall injection molding has been paid attention with a lot of benefits such as cost reduction, shorter process period, and so forth. However, this technology is complicate and difficult to obtain high quality of products compared with conventional injection molding due to warpage caused by uneven shrinkage and molecular orientation. Since warpage of products directly affects product quality and overall performance of devices, it is essential to predict deformation behavior to achieve high precision of molded products. Therefore, this study aims to find out adequate thin-wall mold design for FPC connector housing by employing Moldflow simulation before application. In addition, experimental research is performed by using a fabricated mold structure based on simulated results to prove accuracy and reliability of the suggested simulation for warpage analysis.

Determination of Feed System and Process Conditions for Injection Molding of Automotive Connector Part with Two Warpage Design Characteristics (두 개의 휨 설계특성을 갖는 자동차 커넥터 부품의 사출성형을 위한 피드 시스템 및 공정조건의 결정)

  • Yu, Man-Jun;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.36-43
    • /
    • 2021
  • In this study, the optimal feed system and process conditions that can simultaneously minimize each warpage occurring in the two shape features of the 2P Header HSG, a connector part for automobiles, were determined through injection molding simulation analysis. First, we defined each warping deformation of the two features geometrically and quantified them approximately using the injection molding simulation data. For design optimization, a full factorial experiment was conducted considering the feed system, resin temperature, and packing pressure as design variables, and a follow-up experiment was conducted based on the analysis of the average warpage. In this study, an optimal design was generated considering both the warpage result and resin-saving effect. In the optimal design, the warpages of the two shape features were predicted to be 0.18 and 0.29 mm, and these warpages were found to meet the allowable limit of warpage, which is 0.3 mm, for part assembly.

A Study on mold manufacture of multi-cavity dental iodine container using powder injection molding (분말사출성형을 이용한 다수 캐비티 치과용 요오드 용기 금형제작에 관한 연구)

  • Choi, Jae-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.21-26
    • /
    • 2014
  • When iodine container for dental mouth treatment is opened, thread for treatment is cut by the blade in cap of container. Due to the problem of corrosion in a short period time after the reaction of metal blade to iodine solution, it gives impact on patient hygiene. In order to solve the problem, alternative products such as ceramic blade are developed and produced recently. In case of ceramic blade, it is produced by handwork and machine work. In this study, for the quantity production of ceramic blade with powder injection molding, we proposed a delivery system to have uniform charge of 20 cavity. Using Moldflow, simulation on 20 Cavity flow was performed. And then the mold was obtained through mold production and modification.(based on simulation) After injection molding, debinder, sintering process was achieved for ceramic blade, and the cap product was completed via insert injection on ceramic blade. In this study, we verified possibility of quantity production of ceramic blade which showed effective performance for cutting.