In this paper, we present a dictionary learning method for reducing errors in point cloud models and reconstructing their geometry. For this, 3D feature information is extracted from the models which have a similar shape characteristic as the target model. Then a dictionary is constructed and the geometry is reconstructed using the dictionary. The presented method in this paper consists of the following three steps. First, a geometric patch is constructed from a similar model. Second, a morphological 3D feature of the acquired patch is learned. Third, a geometry reconstruction is performed using the learned dictionary. Finally, the error between the original model and the reconstruction result is calculated, and the accuracy of the reconstruction result is checked.
Proceedings of the Korea Contents Association Conference
/
2018.05a
/
pp.3-4
/
2018
단어 의미 유사도 측정은 정보 검색이나 문서 분류와 같이 자연어 처리 분야 문제를 해결하는 데 큰 도움을 준다. 이러한 의미 유사도 측정 문제를 해결하기 위하여 단어의 계층 구조를 사용한 기존 연구들이 있지만 이는 단어의 의미를 고려하고 있지 않아 만족스럽지 못한 결과를 보여주고 있다. 본 논문에서는 국립국어원에서 간행한 표준국어대사전에 50만 어휘가 추가된 우리말샘 사전을 기반으로 하여 한국어 단어에 대한 계층 구조를 파악했다. 그리고 단어의 용례를 word2vec 모델에 학습하여 단어의 문맥적 의미를 파악하고, 단어의 정의문을 sent2vec 모델에 학습하여 단어의 사전적 의미를 파악했다. 또한, 구축된 계층 구조와 학습된 word2vec, sent2vec 모델을 이용하여 한국어 단어 의미 유사도를 측정하는 모델을 제안했다. 마지막으로 성능 평가를 통해 제안하는 모델이 기존 모델보다 향상된 성능을 보임을 입증했다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.213-218
/
2019
기계독해는 자연어로 표현된 질문과 단락이 주어졌을 때, 해당 단락 내에 표현된 정답을 찾는 태스크이다. 최근 기계독해 태스크도 다른 자연어처리 태스크와 유사하게 BERT, XLNet, RoBERTa와 같이 사전에 학습한 언어모델을 이용하고 질문과 단락이 입력되었을 경우 정답의 경계를 추가 학습(fine-tuning)하는 방법이 우수한 성능을 보이고 있으며, 특히 KorQuAD v1.0 데이터셋에서 학습 및 평가하였을 경우 94% F1 이상의 높은 성능을 보이고 있다. 본 논문에서는 현재 최고 수준의 기계독해 기술이 학습셋과 유사한 평가셋이 아닌 일반적인 질문과 단락 쌍에 대해서 가지는 일반화 능력을 평가하고자 한다. 이를 위하여 첫번째로 한국어에 대해서 공개된 KorQuAD v1.0 데이터셋과 NIA v2017 데이터셋, 그리고 엑소브레인 과제에서 구축한 엑소브레인 v2018 데이터셋을 이용하여 데이터셋 간의 교차 평가를 수행하였다. 교차 평가결과, 각 데이터셋의 정답의 길이, 질문과 단락 사이의 오버랩 비율과 같은 데이터셋 통계와 일반화 성능이 서로 관련이 있음을 확인하였다. 다음으로 KorBERT 사전 학습 언어모델과 학습 가능한 기계독해 데이터 셋 21만 건 전체를 이용하여 학습한 기계독해 모델에 대해 블라인드 평가셋 평가를 수행하였다. 블라인드 평가로 일반분야에서 학습한 기계독해 모델의 법률분야 평가셋에서의 일반화 성능을 평가하고, 정답 단락을 읽고 질문을 생성하지 않고 질문을 먼저 생성한 후 정답 단락을 검색한 평가셋에서의 기계독해 성능을 평가하였다. 블라인드 평가 결과, 사전 학습 언어 모델을 사용하지 않은 기계독해 모델 대비 사전 학습 언어 모델을 사용하는 모델이 큰 폭의 일반화 성능을 보였으나, 정답의 길이가 길고 질문과 단락 사이 어휘 오버랩 비율이 낮은 평가셋에서는 아직 80%이하의 성능을 보임을 확인하였다. 본 논문의 실험 결과 기계 독해 태스크는 특성 상 질문과 정답 사이의 어휘 오버랩 및 정답의 길이에 따라 난이도 및 일반화 성능 차이가 발생함을 확인하였고, 일반적인 질문과 단락을 대상으로 하는 기계독해 모델 개발을 위해서는 다양한 유형의 평가셋에서 일반화 평가가 필요함을 확인하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.69-71
/
2021
특허분야에서 자연어처리 태스크는 특허문헌의 언어적 특이성으로 문제 해결의 난이도가 높은 과제임에 따라 한국 특허문헌에 최적화된 언어모델의 연구가 시급한 실정이다. 본 논문에서는 대량의 한국 특허문헌 데이터를 최적으로 사전 학습(pre-trained)한 Korean Patent ELECTRA 모델과 tokenize 방식을 제안하며 기존 범용 목적의 사전학습 모델과 비교 실험을 통해 한국 특허문헌 자연어처리에 대한 발전 가능성을 확인하였다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.236-238
/
2019
신경망 기계 번역(Neural Machine Translation)은 주로 지도 학습(Supervised learning)을 이용한 End-to-end 방식의 연구가 이루어지고 있다. 그러나 지도 학습 방법은 데이터가 부족한 경우에는 낮은 성능을 보이기 때문에 BERT와 같은 대량의 단일 언어 데이터로 사전학습(Pre-training)을 한 후에 미세조정(Finetuning)을 하는 Transfer learning 방법이 자연어 처리 분야에서 주로 연구되고 있다. 최근에 발표된 MASS 모델은 언어 생성 작업을 위한 사전학습 방법을 통해 기계 번역과 문서 요약에서 높은 성능을 보였다. 본 논문에서는 영어-한국어 기계 번역 성능 향상을 위해 MASS 모델을 신경망 기계 번역에 적용하였다. 실험 결과 MASS 모델을 이용한 영어-한국어 기계 번역 모델의 성능이 기존 모델들보다 좋은 성능을 보였다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.157-161
/
2020
문서 요약(text summarization)은 주어진 문서로부터 중요하고 핵심적인 정보를 포함하는 요약문을 만들어 내는 작업으로, 기계 번역 작업에서 주로 사용되는 Sequence-to-Sequence 모델을 사용한 end-to-end 방식의 생성(abstractive) 요약 모델 연구가 활발히 진행되고 있다. 최근에는 BERT와 MASS 같은 대용량 단일 언어 데이터 기반 사전학습(pre-training) 모델을 이용하여 미세조정(fine-tuning)하는 전이 학습(transfer learning) 방법이 자연어 처리 분야에서 주로 연구되고 있다. 본 논문에서는 MASS 모델에 복사 메커니즘(copying mechanism) 방법을 적용하고, 한국어 언어 생성(language generation)을 위한 사전학습을 수행한 후, 이를 한국어 문서 요약에 적용하였다. 실험 결과, MASS 모델에 복사 메커니즘 방법을 적용한 한국어 문서 요약 모델이 기존 모델들보다 높은 성능을 보였다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.143-148
/
2023
본 논문에서는 금융 도메인 특화 사전학습 언어모델인 KF-DeBERTa(Korean Finance DeBERTa)를 제안한다. KF-DeBERTa는 대규모의 금융 말뭉치를 기반으로 학습하였으며, Transformer 아키텍처와 DeBERTa의 특징을 기반으로 구성되었다. 범용 및 금융 도메인에 대한 평가에서 KF-DeBERTa는 기존 언어모델들에 비해 상당히 높은 성능을 보였다. 특히, 금융 도메인에서의 성능은 매우 두드러졌으며, 범용 도메인에서도 다른 모델들을 상회하는 성능을 나타냈다. KF-DeBERTa는 모델 크기 대비 높은 성능 효율성을 보여주었고, 앞으로 금융 도메인에서의 활용도가 기대된다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.327-330
/
2020
순차적 문장 분류는 여러 문장들을 입력으로 받아 각 문장들에 대하여 사전 정의된 라벨을 할당하는 작업을 말한다. 일반적인 문장 분류와 대조적으로 기준 문장과 주변 문장 사이의 문맥 정보가 분류에 큰 영향을 준다. 따라서 입력 문장들 사이의 문맥 정보를 반영하는 과정이 필수적이다. 최근, 사전 학습 기반 언어 모델의 등장 이후 여러 자연 언어 처리 작업에서 큰 성능 향상이 있었다. 앞서 언급하였던 순차적 문장 분류 작업의 특성상 문맥 정보를 반영한 언어 표현을 생성하는 사전 학습 기반 언어 모델은 해당 작업에 매우 적합하다는 가설을 바탕으로 ELECTRA 기반 순차적 분류 모델을 제안하였다. PUBMED-RCT 데이터 셋을 사용하여 실험한 결과 제안 모델이 93.3%p로 가장 높은 성능을 보였다.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.391-394
/
2021
최근 딥러닝(Deep Learning)을 활용하여 텍스트로 표현된 단어나 문장의 의미를 파악하기 위한 다양한 연구가 활발하게 수행되고 있다. 하지만, 딥러닝을 통해 특정 도메인에서 사용되는 언어를 이해하기 위해서는 해당 도메인의 충분한 데이터에 대해 오랜 시간 학습이 수행되어야 한다는 어려움이 있다. 이러한 어려움을 극복하고자, 최근에는 방대한 양의 데이터에 대한 학습 결과인 사전 학습 언어 모델(Pre-trained Language Model)을 다른 도메인의 학습에 적용하는 방법이 딥러닝 연구에서 많이 사용되고 있다. 이들 접근법은 사전 학습을 통해 단어의 일반적인 의미를 학습하고, 이후에 단어가 특정 도메인에서 갖는 의미를 파악하기 위해 추가적인 학습을 진행한다. 추가 학습에는 일반적으로 대표적인 사전 학습 언어 모델인 BERT의 MLM(Masked Language Model)이 다시 사용되며, 마스크(Mask) 되지 않은 단어들의 의미로부터 마스크 된 단어의 의미를 추론하는 형태로 학습이 이루어진다. 따라서 사전 학습을 통해 의미가 파악되어 있는 단어들이 마스크 되지 않고, 신조어와 같이 의미가 알려져 있지 않은 단어들이 마스크 되는 비율이 높을수록 단어 의미의 학습이 정확하게 이루어지게 된다. 하지만 기존의 MLM은 무작위로 마스크 대상 단어를 선정하므로, 사전 학습을 통해 의미가 파악된 단어와 사전 학습에 포함되지 않아 의미 파악이 이루어지지 않은 신조어가 별도의 구분 없이 마스크에 포함된다. 따라서 본 연구에서는 사전 학습에 포함되지 않았던 신조어에 대해서만 집중적으로 마스킹(Masking)을 수행하는 방안을 제시한다. 이를 통해 신조어의 의미 학습이 더욱 정확하게 이루어질 수 있고, 궁극적으로 이러한 학습 결과를 활용한 후속 분석의 품질도 향상시킬 수 있을 것으로 기대한다. 영화 정보 제공 사이트인 N사로부터 영화 댓글 12만 건을 수집하여 실험을 수행한 결과, 제안하는 신조어 표적 마스킹(NTM: Newly Coined Words Target Masking)이 기존의 무작위 마스킹에 비해 감성 분석의 정확도 측면에서 우수한 성능을 보임을 확인하였다.
Journal of the Korea Society of Computer and Information
/
v.27
no.2
/
pp.15-23
/
2022
In the field of patents, as NLP(Natural Language Processing) is a challenging task due to the linguistic specificity of patent literature, there is an urgent need to research a language model optimized for Korean patent literature. Recently, in the field of NLP, there have been continuous attempts to establish a pre-trained language model for specific domains to improve performance in various tasks of related fields. Among them, ELECTRA is a pre-trained language model by Google using a new method called RTD(Replaced Token Detection), after BERT, for increasing training efficiency. The purpose of this paper is to propose KorPatELECTRA pre-trained on a large amount of Korean patent literature data. In addition, optimal pre-training was conducted by preprocessing the training corpus according to the characteristics of the patent literature and applying patent vocabulary and tokenizer. In order to confirm the performance, KorPatELECTRA was tested for NER(Named Entity Recognition), MRC(Machine Reading Comprehension), and patent classification tasks using actual patent data, and the most excellent performance was verified in all the three tasks compared to comparative general-purpose language models.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.