• Title/Summary/Keyword: 사전학습모델

Search Result 675, Processing Time 0.025 seconds

Towards Korean-Centric Token-free Pretrained Language Model (한국어 중심의 토큰-프리 언어 이해-생성 모델 사전학습 연구)

  • Jong-Hun Shin;Jeong Heo;Ji-Hee Ryu;Ki-Young Lee;Young-Ae Seo;Jin Seong;Soo-Jong Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.711-715
    • /
    • 2023
  • 본 연구는 대부분의 언어 모델이 사용하고 있는 서브워드 토큰화 과정을 거치지 않고, 바이트 단위의 인코딩을 그대로 다룰 수 있는 토큰-프리 사전학습 언어모델에 대한 것이다. 토큰-프리 언어모델은 명시적인 미등록어 토큰이 존재하지 않고, 전 처리 과정이 단순하며 다양한 언어 및 표현 체계에 대응할 수 있는 장점이 있다. 하지만 관련 연구가 미흡, 서브워드 모델에 대비해 학습이 어렵고 낮은 성능이 보고되어 왔다. 본 연구에서는 한국어를 중심으로 토큰-프리 언어 이해-생성 모델을 사전 학습 후, 서브워드 기반 모델과 비교하여 가능성을 살펴본다. 또한, 토큰 프리 언어모델에서 지적되는 과도한 연산량을 감소시킬 수 있는 그래디언트 기반 서브워드 토크나이저를 적용, 처리 속도를 학습 2.7배, 추론 1.46배 개선하였다.

  • PDF

Calibration of Pre-trained Language Model for Korean (사전 학습된 한국어 언어 모델의 보정)

  • Jeong, Soyeong;Yang, Wonsuk;Park, ChaeHun;Park, Jong C.
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.243-248
    • /
    • 2020
  • 인공 신경망을 통한 심층 학습 모델의 발전은 컴퓨터 비전, 자연언어 이해 문제들에서 인간을 뛰어넘는 성능을 보이고 있다. 특히 트랜스포머[1] 기반의 사전 학습 모델은 질의응답, 대화문과 같은 자연언어 이해 문제에서 최근 높은 성능을 보이고 있다. 하지만 트랜스포머 기반의 모델과 같은 심층 학습 모델의 급격한 발전 양상에 비해, 이의 동작 방식은 상대적으로 잘 알려져 있지 않다. 인공 신경망을 통한 심층 학습 모델을 해석하는 방법으로 모델의 예측 값과 실제 값이 얼마나 일치하는지를 측정하는 모델의 보정(Calibration)이 있다. 본 연구는 한국어 기반의 심층학습 모델의 해석을 위해 모델의 보정을 수행하였다. 그리고 사전 학습된 한국어 언어 모델이 문장이 내포하는 애매성을 잘 파악하는지의 여부를 확인하고, 완화 기법들을 적용하여 문장의 애매성을 확신 수준을 통해 정량적으로 출력할 수 있도록 하였다. 또한 한국어의 문법적 특징으로 인한 문장의 의미 변화를 모델 보정 관점에서 평가하여 한국어의 문법적 특징을 심층학습 언어 모델이 잘 이해하고 있는지를 정량적으로 확인하였다.

  • PDF

Parameter-Efficient Prompting for Few-Shot Learning (Prompting 기반 매개변수 효율적인 Few-Shot 학습 연구)

  • Eunhwan Park;Sung-Min Lee;Daeryong Seo;Donghyeon Jeon;Inho Kang;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.343-347
    • /
    • 2022
  • 최근 자연어처리 분야에서는 BERT, RoBERTa, 그리고 BART와 같은 사전 학습된 언어 모델 (Pre-trained Language Models, PLM) 기반 미세 조정 학습을 통하여 여러 하위 과업에서 좋은 성능을 거두고 있다. 이는 사전 학습된 언어 모델 및 데이터 집합의 크기, 그리고 모델 구성의 중요성을 보여주며 대규모 사전 학습된 언어 모델이 각광받는 계기가 되었다. 하지만, 거대한 모델의 크기로 인하여 실제 산업에서 쉽게 쓰이기 힘들다는 단점이 명백히 존재함에 따라 최근 매개변수 효율적인 미세 조정 및 Few-Shot 학습 연구가 많은 주목을 받고 있다. 본 논문은 Prompt tuning, Prefix tuning와 프롬프트 기반 미세 조정 (Prompt-based fine-tuning)을 결합한 Few-Shot 학습 연구를 제안한다. 제안한 방법은 미세 조정 ←→ 사전 학습 간의 지식 격차를 줄일 뿐만 아니라 기존의 일반적인 미세 조정 기반 Few-Shot 학습 성능보다 크게 향상됨을 보인다.

  • PDF

Molecular Property Prediction with Deep-learning and Pretraining Strategy (사전학습 전략과 딥러닝을 활용한 분자의 특성 예측)

  • Lee, Seungbeom;Kim, Jiye;Kim, Dongwoo;Park, Jaesik;Ahn, Sungsoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.63-66
    • /
    • 2022
  • 본 논문에서는 분자의 특성을 정확하게 예측하기 위해 효과적인 사전학습(pretraining) 전략과 트랜스포머(Transformer) 모델을 활용한 방법을 제시한다. 딥러닝을 활용한 분자의 성능을 예측하는 연구는 그동안 레이블이 부족한 분자데이터의 특성에 의해 학습 때 사용된 데이터이외의 분자데이터에 대해 일반화 능력이 떨어지는 어려움을 겪었다. 이 논문에서 제시한 모델은 사전학습(pretraining)을 수행할 때 자기지도학습(self-supervised training)을 사용하여 부족한 레이블에 의한 문제점을 피할 수 있다. 대규모 분자 데이터셋으로부터 학습된 이 모델은 4가지 다운스트림 데이터셋에 대해 모두 우수한 성능을 보여주어 일반화 성능이 뛰어나며 효과적인 분자표현을 얻을 수 있음을 보인다.

  • PDF

Solving POMDP problem using Self-organizing state RL (상태 조직화 강화학습을 사용한 POMDP 문제 해결)

  • 이승준;장병탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.73-77
    • /
    • 2001
  • 본 논문에서는 부분적으로 관측 가능한 환경에서 사전의 모델 정보 없이 확률적인 행동 정책을 학습하는 상태 조직화 강화 학습 모델을 제안한다. 기존의 강화학습은 환경 모델을 사전에 필요로 하고 상태 전체의 관측이 필요하기 때문에 학습 이전에 문제에 대해 알아야 한다는 제약이 있다. 또한 작은 문제에 대해서는 잘 적용되지만 상태의 수가 매우 많고 부분적으로만 관측한 경우가 많은 실제 문제에는 그대로 적용하기가 불가능하다. 이러한 두 가지 단점을 해결하기 위해 본 논문에서는 사전의 모델 정보 없이 부분적인 관측값으로부터 상태와 행동 정책을 동시에 학습해 나가는 강화 학습 모델을 제안하고, 제안된 방법을 부분적으로만 관측이 가능한 미로 탐색 문제에 적용하였다.

  • PDF

KB-BERT: Training and Application of Korean Pre-trained Language Model in Financial Domain (KB-BERT: 금융 특화 한국어 사전학습 언어모델과 그 응용)

  • Kim, Donggyu;Lee, Dongwook;Park, Jangwon;Oh, Sungwoo;Kwon, Sungjun;Lee, Inyong;Choi, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.191-206
    • /
    • 2022
  • Recently, it is a de-facto approach to utilize a pre-trained language model(PLM) to achieve the state-of-the-art performance for various natural language tasks(called downstream tasks) such as sentiment analysis and question answering. However, similar to any other machine learning method, PLM tends to depend on the data distribution seen during the training phase and shows worse performance on the unseen (Out-of-Distribution) domain. Due to the aforementioned reason, there have been many efforts to develop domain-specified PLM for various fields such as medical and legal industries. In this paper, we discuss the training of a finance domain-specified PLM for the Korean language and its applications. Our finance domain-specified PLM, KB-BERT, is trained on a carefully curated financial corpus that includes domain-specific documents such as financial reports. We provide extensive performance evaluation results on three natural language tasks, topic classification, sentiment analysis, and question answering. Compared to the state-of-the-art Korean PLM models such as KoELECTRA and KLUE-RoBERTa, KB-BERT shows comparable performance on general datasets based on common corpora like Wikipedia and news articles. Moreover, KB-BERT outperforms compared models on finance domain datasets that require finance-specific knowledge to solve given problems.

VL-KE-T5: A contrastive learning-based pre-trained model using image-language parallel data composed of Korean and English (VL-KE-T5: 한국어와 영어로 구성된 영상-언어 병렬 데이터를 이용한 대조학습 기반 사전학습모델 구축)

  • San Kim;Saim, Shin
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.337-342
    • /
    • 2022
  • 본 논문은 한국어-영어 기반 영상-언어 모델인 VL-KE-T5를 소개한다. VL-KE-T5는 영상-텍스트 쌍으로 구성된 한국어와 영어 데이터 약 2천 3백만개를 이용하여 영상-언어 모델의 임베딩 벡터들을 정렬시킨 사전학습모델이며, 미세조정을 통하여 여러 영상-언어 작업에 활용할 할 수 있다. VL-KE-T5는 텍스트 기반 영상 검색 작업에서 높은 성능을 보였으나, 세세한 속성을 가진 여러 객체들의 나열이나 객체 간 관계를 포함한 텍스트 기반 영상 검색에서는 비교적 낮은 성능을 보였다.

  • PDF

Korean and Multilingual Language Models Study for Cross-Lingual Post-Training (XPT) (Cross-Lingual Post-Training (XPT)을 위한 한국어 및 다국어 언어모델 연구)

  • Son, Suhyune;Park, Chanjun;Lee, Jungseob;Shim, Midan;Lee, Chanhee;Park, Kinam;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.77-89
    • /
    • 2022
  • It has been proven through many previous researches that the pretrained language model with a large corpus helps improve performance in various natural language processing tasks. However, there is a limit to building a large-capacity corpus for training in a language environment where resources are scarce. Using the Cross-lingual Post-Training (XPT) method, we analyze the method's efficiency in Korean, which is a low resource language. XPT selectively reuses the English pretrained language model parameters, which is a high resource and uses an adaptation layer to learn the relationship between the two languages. This confirmed that only a small amount of the target language dataset in the relationship extraction shows better performance than the target pretrained language model. In addition, we analyze the characteristics of each model on the Korean language model and the Korean multilingual model disclosed by domestic and foreign researchers and companies.

In-Context Retrieval-Augmented Korean Language Model (In-Context 검색 증강형 한국어 언어 모델)

  • Sung-Min Lee;Joung Lee;Daeryong Seo;Donghyeon Jeon;Inho Kang;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.443-447
    • /
    • 2023
  • 검색 증강형 언어 모델은 입력과 연관된 문서들을 검색하고 텍스트 생성 과정에 통합하여 언어 모델의 생성 능력을 강화한다. 본 논문에서는 사전 학습된 대규모 언어 모델의 추가적인 학습 없이 In-Context 검색 증강으로 한국어 언어 모델의 생성 능력을 강화하고 기존 언어 모델 대비 성능이 증가함을 보인다. 특히 다양한 크기의 사전 학습된 언어 모델을 활용하여 검색 증강 결과를 보여 모든 규모의 사전 학습 모델에서 Perplexity가 크게 개선된 결과를 확인하였다. 또한 오픈 도메인 질의응답(Open-Domain Question Answering) 과업에서도 EM-19, F1-27.8 향상된 결과를 보여 In-Context 검색 증강형 언어 모델의 성능을 입증한다.

  • PDF

TOEIC Model Training Through Template-Based Fine-Tuning (템플릿 기반 미세조정을 통한 토익 모델 훈련)

  • Jeongwoo Lee;Hyeonseok Moon;Kinam Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.324-328
    • /
    • 2022
  • 기계 독해란 주어진 문서를 이해하고 문서 내의 내용에 대한 질문에 답을 추론하는 연구 분야이며, 기계 독해 문제의 종류 중에는 여러 개의 선택지에서 질문에 대한 답을 선택하는 객관식 형태의 문제가 존재한다. 이러한 자연어 처리 문제를 해결하기 위해 기존 연구에서는 사전학습된 언어 모델을 미세조정하여 사용하는 방법이 널리 활용되고 있으나, 학습 데이터가 부족한 환경에서는 기존의 일반적인 미세조정 방법으로 모델의 성능을 높이는 것이 제한적이며 사전학습된 의미론적인 정보를 충분히 활용하지 못하여 성능 향상에 한계가 있다. 이에 본 연구에서는 기존의 일반적인 미세조정 방법에 템플릿을 적용한 템플릿 기반 미세조정 방법을 통해 사전학습된 의미론적인 정보를 더욱 활용할 수 있도록 한다. 객관식 형태의 기계 독해 문제 중 하나인 토익 문제에 대해 모델을 템플릿 기반 미세조정 방법으로 실험을 진행하여 템플릿이 모델 학습에 어떠한 영향을 주는지 확인하였다.

  • PDF