• 제목/요약/키워드: 사전학습모델

Search Result 675, Processing Time 0.023 seconds

The Bi-Cross Pretraining Method to Enhance Language Representation (Bi-Cross 사전 학습을 통한 자연어 이해 성능 향상)

  • Kim, Sung-ju;Kim, Seonhoon;Park, Jinseong;Yoo, Kang Min;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.320-325
    • /
    • 2021
  • BERT는 사전 학습 단계에서 다음 문장 예측 문제와 마스킹된 단어에 대한 예측 문제를 학습하여 여러 자연어 다운스트림 태스크에서 높은 성능을 보였다. 본 연구에서는 BERT의 사전 학습 문제 중 다음 문장 예측 문제에 대해 주목했다. 다음 문장 예측 문제는 자연어 추론 문제와 질의 응답 문제와 같이 임의의 두 문장 사이의 관계를 모델링하는 문제들에 성능 향상을 위해 사용되었다. 하지만 BERT의 다음 문장 예측 문제는 두 문장을 특수 토큰으로 분리하여 단일 문자열 형태로 모델에 입력으로 주어지는 cross-encoding 방식만을 학습하기 때문에 문장을 각각 인코딩하는 bi-encoding 방식의 다운스트림 태스크를 고려하지 않은 점에서 아쉬움이 있다. 본 논문에서는 기존 BERT의 다음 문장 예측 문제를 확장하여 bi-encoding 방식의 다음 문장 예측 문제를 추가적으로 사전 학습하여 단일 문장 분류 문제와 문장 임베딩을 활용하는 문제에서 성능을 향상 시키는 Bi-Cross 사전 학습 기법을 소개한다. Bi-Cross 학습 기법은 영화 리뷰 감성 분류 데이터 셋인 NSMC 데이터 셋에 대해 학습 데이터의 0.1%만 사용하는 학습 환경에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 5점 가량의 성능 향상이 있었다. 또한 KorSTS의 bi-encoding 방식의 문장 임베딩 성능 평가에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 1.5점의 성능 향상을 보였다.

  • PDF

Cross-Lingual Transfer of Pretrained Transformers to Resource-Scarce Languages (사전 학습된 Transformer 언어 모델의 이종 언어 간 전이 학습을 통한 자원 희소성 문제 극복)

  • Lee, Chanhee;Park, Chanjun;Kim, Gyeongmin;Oh, Dongsuk;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.135-140
    • /
    • 2020
  • 사전 학습된 Transformer 기반 언어 모델은 자연어처리 시스템에 적용되었을 시 광범위한 사례에서 큰 폭의 성능 향상을 보여준다. 여기서 사전 학습에 사용되는 언어 모델링 태스크는 비지도 학습에 속하는 기술이기 때문에 상대적으로 데이터의 확보가 쉬운 편이다. 하지만 몇 종의 주류 언어를 제외한 대부분 언어는 활용할 수 있는 언어 자원 자체가 희소하며, 따라서 이러한 사전 학습 기술의 혜택도 누리기 어렵다. 본 연구에서는 이와 같은 상황에서 발생할 수 있는 자원 희소성 문제를 극복하기 위해 이종 언어 간 전이 학습을 이용하는 방법을 제안한다. 본 방법은 언어 자원이 풍부한 언어에서 학습된 Transformer 기반 언어 모델에서 얻은 파라미터 중 재활용 가능한 부분을 이용하여 목표 언어의 모델을 초기화한 후 학습을 진행한다. 또한, 기존 언어와 목표 언어의 차이를 학습하는 역할을 하는 적응층들을 추가하여 이종 언어 간 전이 학습을 돕는다. 제안된 방법을 언어 자원이 희귀한 상황에 대하여 실험해본 결과, 전이 학습을 사용하지 않은 기준 모델 대비 perplexity와 단어 예측의 정확도가 큰 폭으로 향상됨을 확인하였다.

  • PDF

Post-Training with Hierarchical Masked Language Modeling (계층적 마스크 모델링을 이용한 언어 모델의 사후 학습)

  • Hyun-Kyu Jeon;Hyein Jung;Seoyeon Park;Bong-Su Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.588-591
    • /
    • 2022
  • 최근 자연어 이해 및 생성에 있어서 사전학습 기반의 언어 모델이 널리 사용되고 있다. BERT, roBERTa 등의 모델이 있으며, 마스크 언어 모델링을 주요 과제로 하여 사전 학습을 한다. 하지만 MLM은 문법적인 정보를 활용하지 못하는 단점이 있다. 단 순히 무작위로 마스크를 씌우고 맞추기 때문이다. 따라서 본 연구에서는 입력 문장의 문법적 정보를 활용하는 방법을 소개하고, 이를 기반으로 사후 학습을 하여 그 효과를 확인해 본다. 공개된 사전학습 모델과 사후학습 모델을 한국어를 위한 벤치마크 데이터셋 KLUE에 대하여 조정학습하고 그 결과를 살펴본다.

  • PDF

A Survey on Deep Learning-based Pre-Trained Language Models (딥러닝 기반 사전학습 언어모델에 대한 이해와 현황)

  • Sangun Park
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.11-29
    • /
    • 2022
  • Pre-trained language models are the most important and widely used tools in natural language processing tasks. Since those have been pre-trained for a large amount of corpus, high performance can be expected even with fine-tuning learning using a small number of data. Since the elements necessary for implementation, such as a pre-trained tokenizer and a deep learning model including pre-trained weights, are distributed together, the cost and period of natural language processing has been greatly reduced. Transformer variants are the most representative pre-trained language models that provide these advantages. Those are being actively used in other fields such as computer vision and audio applications. In order to make it easier for researchers to understand the pre-trained language model and apply it to natural language processing tasks, this paper describes the definition of the language model and the pre-learning language model, and discusses the development process of the pre-trained language model and especially representative Transformer variants.

Pre-trained Language Model for Table Question and Answering (표 질의응답을 위한 언어 모델 학습 및 데이터 구축)

  • Sim, Myoseop;Jun, Changwook;Choi, Jooyoung;Kim, Hyun;Jang, Hansol;Min, Kyungkoo
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.335-339
    • /
    • 2021
  • 기계독해(MRC)는 인공지능 알고리즘이 문서를 이해하고 질문에 대한 정답을 찾는 기술이다. MRC는 사전 학습 모델을 사용하여 높은 성능을 내고 있고, 일반 텍스트문서 뿐만 아니라 문서 내의 테이블(표)에서도 정답을 찾고자 하는 연구에 활발히 적용되고 있다. 본 연구에서는 기존의 사전학습 모델을 테이블 데이터에 활용하여 질의응답을 할 수 있는 방법을 제안한다. 더불어 테이블 데이터를 효율적으로 학습하기 위한 데이터 구성 방법을 소개한다. 사전학습 모델은 BERT[1]를 사용하여 테이블 정보를 인코딩하고 Masked Entity Recovery(MER) 방식을 사용한다. 테이블 질의응답 모델 학습을 위해 한국어 위키 문서에서 표와 연관 텍스트를 추출하여 사전학습을 진행하였고, 미세 조정은 샘플링한 테이블에 대한 질문-답변 데이터 약 7만건을 구성하여 진행하였다. 결과로 KorQuAD2.0 데이터셋의 테이블 관련 질문 데이터에서 EM 69.07, F1 78.34로 기존 연구보다 우수한 성능을 보였다.

  • PDF

Korean Named Entity Recognition based on ELECTRA with CRFs (ELECTRA-CRFs 기반 한국어 개체명 인식기)

  • Hong, Jiyeon;Kim, Hyunwoo J
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.473-476
    • /
    • 2020
  • 개체명 인식에 적용된 대부분의 신경망 모델들에서 CRFs와 결합을 통해 성능 향상을 하였다. 그러나 최근 대용량 데이터로 사전 학습한 모델을 활용하는 경우, 기 학습된 많은 유의미한 파라미터들로 인해 CRFs의 영향력이 비교적 작아졌다. 따라서 본 논문에서는 한국어 대용량 말뭉치로 사전 학습한 ELECTRA 모델에서의 CRFs 가 개체명 인식에 미치는 영향을 확인해보고자 한다. 모델의 입력 단위로 음절 단위와 Wordpiece 단위로 사전 학습된 두 가지의 모델을 사용하여 미세 조정을 통해 개체명 인식을 학습하였다. 실험을 통해서 두 모델에 대하여 각각 CRFs 층의 유무에 따른 성능을 비교해 보았다. 그 결과로 ELECTRA 기반으로 사전 학습된 모델에서 CRFs를 통한 F1-점수 향상을 보였다.

  • PDF

KorSciDeBERTa: A Pre-trained Language Model Based on DeBERTa for Korean Science and Technology Domains (KorSciDeBERTa: 한국어 과학기술 분야를 위한 DeBERTa 기반 사전학습 언어모델)

  • Seongchan Kim;Kyung-min Kim;Eunhui Kim;Minho Lee;Seungwoo Lee;Myung-Seok Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.704-706
    • /
    • 2023
  • 이 논문에서는 과학기술분야 특화 한국어 사전학습 언어모델인 KorSciDeBERTa를 소개한다. DeBERTa Base 모델을 기반으로 약 146GB의 한국어 논문, 특허 및 보고서 등을 학습하였으며 모델의 총 파라미터의 수는 180M이다. 논문의 연구분야 분류 태스크로 성능을 평가하여 사전학습모델의 유용성을 평가하였다. 구축된 사전학습 언어모델은 한국어 과학기술 분야의 여러 자연어처리 태스크의 성능향상에 활용될 것으로 기대된다.

  • PDF

Korean Pre-trained Model KE-T5-based Automatic Paper Summarization (한국어 사전학습 모델 KE-T5 기반 자동 논문 요약)

  • Seo, Hyeon-Tae;Shin, Saim;Kim, San
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.505-506
    • /
    • 2021
  • 최근 인터넷에서 기하급수적으로 증가하는 방대한 양의 텍스트를 자동으로 요약하려는 연구가 활발하게 이루어지고 있다. 자동 텍스트 요약 작업은 다양한 사전학습 모델의 등장으로 인해 많은 발전을 이루었다. 특히 T5(Text-to-Text Transfer Transformer) 기반의 모델은 자동 텍스트 요약 작업에서 매우 우수한 성능을 보이며, 해당 분야의 SOTA(State of the Art)를 달성하고 있다. 본 논문에서는 방대한 양의 한국어를 학습시킨 사전학습 모델 KE-T5를 활용하여 자동 논문 요약을 수행하고 평가한다.

  • PDF

Methodology for Overcoming the Problem of Position Embedding Length Limitation in Pre-training Models (사전 학습 모델의 위치 임베딩 길이 제한 문제를 극복하기 위한 방법론)

  • Minsu Jeong;Tak-Sung Heo;Juhwan Lee;Jisu Kim;Kyounguk Lee;Kyungsun Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.463-467
    • /
    • 2023
  • 사전 학습 모델을 특정 데이터에 미세 조정할 때, 최대 길이는 사전 학습에 사용한 최대 길이 파라미터를 그대로 사용해야 한다. 이는 상대적으로 긴 시퀀스의 처리를 요구하는 일부 작업에서 단점으로 작용한다. 본 연구는 상대적으로 긴 시퀀스의 처리를 요구하는 질의 응답(Question Answering, QA) 작업에서 사전 학습 모델을 활용할 때 발생하는 시퀀스 길이 제한에 따른 성능 저하 문제를 극복하는 방법론을 제시한다. KorQuAD v1.0과 AIHub에서 확보한 데이터셋 4종에 대하여 BERT와 RoBERTa를 이용해 성능을 검증하였으며, 실험 결과, 평균적으로 길이가 긴 문서를 보유한 데이터에 대해 성능이 향상됨을 확인할 수 있었다.

  • PDF

The Effect of Domain Specificity on the Performance of Domain-Specific Pre-Trained Language Models (도메인 특수성이 도메인 특화 사전학습 언어모델의 성능에 미치는 영향)

  • Han, Minah;Kim, Younha;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.251-273
    • /
    • 2022
  • Recently, research on applying text analysis to deep learning has steadily continued. In particular, researches have been actively conducted to understand the meaning of words and perform tasks such as summarization and sentiment classification through a pre-trained language model that learns large datasets. However, existing pre-trained language models show limitations in that they do not understand specific domains well. Therefore, in recent years, the flow of research has shifted toward creating a language model specialized for a particular domain. Domain-specific pre-trained language models allow the model to understand the knowledge of a particular domain better and reveal performance improvements on various tasks in the field. However, domain-specific further pre-training is expensive to acquire corpus data of the target domain. Furthermore, many cases have reported that performance improvement after further pre-training is insignificant in some domains. As such, it is difficult to decide to develop a domain-specific pre-trained language model, while it is not clear whether the performance will be improved dramatically. In this paper, we present a way to proactively check the expected performance improvement by further pre-training in a domain before actually performing further pre-training. Specifically, after selecting three domains, we measured the increase in classification accuracy through further pre-training in each domain. We also developed and presented new indicators to estimate the specificity of the domain based on the normalized frequency of the keywords used in each domain. Finally, we conducted classification using a pre-trained language model and a domain-specific pre-trained language model of three domains. As a result, we confirmed that the higher the domain specificity index, the higher the performance improvement through further pre-training.