• 제목/요약/키워드: 사장재

검색결과 92건 처리시간 0.02초

충남 태안 철마산 일대의 지질 및 희토류 광화작용 (REE Mineralization and Geology of Chulmasan Area, Taean, Chungchungnamdo)

  • 유봉철
    • 한국광물학회지
    • /
    • 제32권2호
    • /
    • pp.127-143
    • /
    • 2019
  • 철마산 일대의 지질은 하부로부터 선캠브리아기의 소근리층, 화강암질편마암, 엽리상 흑운모화강암, 엽리상 운모화강암, 염기성암맥 및 산성암맥으로 구성된다. 이 일대의 희토류 광화작용은 화강암질편마암과 엽리상 운모화강암에서 관찰된다. 이들 암석에서 소량 희토류 원소 및 토륨을 함유한 광물들은 저어콘($Y_2O_3$ 0.00~1.18 wt.%, $Gd_2O_3$ 0.00~0.59 wt.%, $Er_2O_3$ 0.00~0.22 wt.%, $Yb_2O_3$ 0.00~0.34 wt.%, $Lu_2O_3$ 0.00~0.48 wt.%, $ThO_2$ 0.00~0.33 wt.%), 토리아나이트($Nd_2O_3$ 0.00~0.24 wt.%, $Lu_2O_3$ 0.00~0.26 wt.%), 베르시에린($La_2O_3$ 0.04~0.26 wt.%, $Nd_2O_3$ 0.00~0.20 wt.%, $Tb_2O_3$ 0.04~0.12 wt.%, $Dy_2O_3$ 0.17~0.26 wt.%, $Er_2O_3$ 0.33~0.44 wt.%, $Lu_2O_3$ 0.00~0.19 wt.%, $ThO_2$ 0.61~0.93 wt.%), 녹니석($La_2O_3$ 0.44~0.68 wt.%, $Ce_2O_3$ 0.12~0.13 wt.%, $Nd_2O_3$ 0.31~0.44 wt.%, $Eu_2O_3$ 0.03~0.08 wt.%, $Dy_2O_3$ 0.09~0.21 wt.%, $Ho_2O_3$ 0.04~0.14 wt.%, $Er_2O_3$ 0.18~0.32 wt.%, $Lu_2O_3$ 0.07~0.21 wt.%, $ThO_2$ 0.00~0.97 wt.%), 흑운모($Nd_2O_3$ 0.02~0.08 wt.%, $Gd_2O_3$ 0.07~0.08 wt.%, $Tb_2O_3$ 0.02~0.07 wt.%, $Dy_2O_3$ 0.35~0.43 wt.%, $Ho_2O_3$ 0.15~0.26 wt.%, $Er_2O_3$ 0.24~0.28 wt.%, $Yb_2O_3$ 0.06~0.18 wt.%, $ThO_2$ 0.00~0.12 wt.%), 정장석($Dy_2O_3$ 0.05~0.12 wt.%, $Ho_2O_3$ 0.05~0.06 wt.%, $Er_2O_3$ 0.28 wt.%, $Yb_2O_3$ 0.06~0.12 wt.%) 및 사장석($Ho_2O_3$ 0.01~0.03 wt.%, $Er_2O_3$ 0.10~0.27 wt.%, $ThO_2$ 0.11~0.13 wt.%)이며 희토류 광물로는 바스트나사이트와 퍼구소나이트이다. 희토류 광물들은 주로 장석류, 운모류, 저어콘, 인회석 및 티탄철석의 간극을 따라 산출된다. 따라서 철마산 일대의 희토류 광화작용 산물인 바스트나사이트와 퍼구소나이트는 화강암질편마암과 엽리상 운모화강암의 형성 시 희토류 원소 및 토륨이 구성광물 내에 소량 함유되어 있었으며 그후 계속된 화성활동 및 변성작용에 의하여 기존 광물 내에 함유되어 있던 희토류 원소가 재 농집에 의해 형성된 것으로 생각된다.

양송이 수량(收量)에 미치는 합성퇴비배지(合成堆肥培地)의 영양원(營養源), 발효(醱酵) 및 유해생물(有害生物)에 관((關)한 연구(硏究) (Studies on nutrient sources, fermentation and harmful organisms of the synthetic compost affecting yield of Agaricus bisporus (Lange) Sing)

  • 신관철
    • 한국균학회지
    • /
    • 제7권1호
    • /
    • pp.13-73
    • /
    • 1979
  • 양송이 합성퇴비(合成堆肥) 배지(培地)의 제조(製造)에 있어서 탄소원(炭素原), 질소원(窒素源) 등(等) 영양원(營養源)과 물리적(物理的) 안정(安定)을 위(爲)한 보조재료(補助材料)의 선정(選定), 볏짚을 주재료(主材料)로 사용(使用)할 때의 퇴비재료(堆肥材料)의 배합(配合), 야외퇴적(野外堆積) 및 후발효(後醱酵), 볏짚 퇴비배지(堆肥倍地)에서의 유해생물(有害生物) 발생(發生) 및 방제(防除)에 관(關)한 연구(硏究)를 수행(遂行)한 바 그 결과(結果)를 요약(要約)하면 다음과 같다. 1. 합성퇴비배지(合成堆肥倍地)의 탄소원(炭素原)으로서 볏짚은 보리짚과 밀짚보다 발효(醱酵)가 신속(迅速)하고 퇴비(堆肥)의 질소함량(窒素含量)이 높으며 배지(培地)의 질(質)이 양호(良好)하여 양송이 자실체(字實體) 수량(收量)이 현저(顯著)히 높았다. 2. 한국(韓國)에서 생산(生産)되는 일본형(日本型) 벼와 통일품종(統一品種等) 두 계통(系統)의 볏짚은 초형(草型) 및 이화학적(理化學的) 성질(性質)이 달라서 퇴비(堆肥)의 발효상태(醱酵狀態)에 차이(差異)가 많았다. 통일(統一)볏짚은 발효(醱酵)가 빠르게 진행(進行)되므로 퇴적기간(堆積期間)을 단축(短縮)하고 수분공급량(水分供給量)을 감소(減少)시키며 물리성(物理成) 안정재(安定材)를 첨가(添加)하여야 한다. 3. 보릿짚 퇴비(堆肥)는 볏짚퇴비(堆肥)보다 생산성(生産性)이 낮으나 보릿짚과 볏짚을 50 : 50으로 혼용(混用)하면 볏짚과 대등(對等)한 수량(收量)을 얻을 수 있었다. 4. 퇴비배지(堆肥倍地)의 전질소(全窒素), 전유기물(全有機物) 질소(窒素) 및 Amino산태(酸態), Amide태(態) Amino당태(糖態) 질소(窒素)와 자실체(字實體) 수량간(收量間)에는 각각(各各) 높은 정(正)의 상관(相關)이 있으나 Ammonia태(態) 질소(窒素)는 균사생장 및 자실체(字實體) 형성(形成)에 심(甚)히 유해(有害)하였다. 5. 볏짚을 주재료(主材料)로 사용(使用)할 때 무기태(無機態) 질소원(窒素源)으로서 요소(尿素)가 가장 좋았고 유안(硫安)과 석회질소(石灰質素)는 부적당(不適當)하였다. 요소(尿素)는 3회(回) 분시(分施)할 때 손실(損失)이 감소(減少)되고 퇴비(堆肥)의 질소함량(窒素含量)이 증가(增加)하였다. 6. 유기태영양원(有機態營養源) 중(中) 들깻묵, 참깻묵, 밀기울, 계양(鷄養) 등(等)의 첨가(添加)는 퇴비(堆肥)의 발효(醱酵)를 양호(良好)하게 하고 자실체수량(字實體收量)을 증가(增加)시켰다. 7. 들깻묵, 밀기울 등(等) 유기태영양원(有機態營養源)은 장유박(醬油粕), 이분조미료폐비(泥粉調味料廢肥) 등(等) 공장폐엽물(工場廢葉物)로서 대체(代替)하여 재배(栽培)할 수 있었다. 8. 볏짚퇴비(堆肥) 제조시(製造時) 석고(石膏)와 Zeolite를 첨가(添加)하면 과습(過濕) 및 결착(結着) 등(等)으로 인(因)한 물리성(物理性)의 악화(惡化)가 방지(防止)되며, 자실체수량(字實體收量)이 증가(增加)하는데 그 효과(效果)는 일본형(日本型) 볏짚보다 통일(統一)에서 현저(顯著)하였다. 9. 볏짚을 주재료(主材料)로 퇴비재료(堆肥材料)를 배합(配合)할 때 계양(鷄養) 10%, 깻묵 5%, 요소(尿素) $1.2{\sim}1.5%$, 석고(石膏) 1%를 첨가(添加)하고 봄재배(栽培) 때는 발열촉진(發熱促進)을 위(爲)하여 미강(米糠)을 첨가(添加)하는 것이 좋았다. 10. 볏짚배지(培地)의 야외퇴적시(野外堆積時) 적산온도(積算溫度)와 퇴비(堆肥) 부열도간(腐熱度間)에는 r=0.97의 높은 상관(相關)이 이고 적산온도(積算溫度) $900{\sim}1000^{\circ}C$일 때 자실체(字實體) 수량(收量)이 가장 많았다. 11. 퇴적기간(堆積期間)이 길어질수록 퇴비(堆肥)의 부열도(腐熱度)가 높아지고 전질소함량(全窒素含量)이 증가(增加)하고 Ammonia태(態) 질소(窒素)는 감소(減少)하였는데, 볏짚배지(培地)의 퇴적기간(堆積期間)은 봄재배(栽培) $20{\sim}25$일(日), 가을재배(栽培) 15일(日)이 적당(適當)하였고 그때의 부열도(腐熱度)는 각각 19및 24%였다. 12. 퇴비(堆肥) 후발효시(後醱酵時) 수분함량(水分含量)이 높은 퇴비(堆肥)를 진압(鎭壓) 하여 입상(入床)할 때 공기유통(空氣流通)이 감소(減少)하여 Ammonia태(態) 질소(窒素)의 잔류량(殘溜量)이 증가(增加)하고 Methane과 유기산(有機酸) 등(等) 환원성(還元性) 물질(物質)의 생성(生成)이 많았다. r=-0.76, 휘발성(揮發性) 유기산(有機酸)과는 r=-0.73의 부(負)의 상관(相關)이 있었다. 13. 입상시(入床時) 퇴비(堆肥)의 수분함량(水分含量) $69{\sim}80%$ 범위(範圍)에서 자실체(字實體) 수량(收量)은 수분함량(水分含量)이 증가(增加)할수록 감소(減少)하였는데 (r=-0.78) 이것은 공극량(孔隙量)의 감소(減少)에 기인(基因)하는 것이었다. 입상시(入床時) 균상(菌床)의 적정 공극량(孔隙量)은 $41{\sim}45%$. 14. 후발효(後發效) 정열(頂熱)은 병해충 방제(防除) 뿐 아니고 Ammonia의 제거(除去)를 위(爲)해서 필수적(必須的) 과정(科程)이며 정열후(情熱後) 4일간(日間)의 발효(發效) 과정(科程)이 필요(必要)하였다. 15. 볏짚 퇴비배지(堆肥倍地)에서 양송이 균(菌)에 유해(有害)한 영향(影響)을 미치는 사장균 10종(種)이 동정(同定)되었는데 그 중(中) Diehliomyces microsporus, Trichoderma spp.,Stysanus stemoitis 등(等)은 발생빈도(發生頻度)가 높고 피해(被害)가 심(甚)하였다. 16. Diehliomyces는 재배사(栽培舍) 온도조절(溫度調節), Basamid와 Vapam처리(處理)로서 방제(防除)가 가능(可能)하며 Trichoderma spp.는 Bavistin과 Benomyl 철포(撤布)로서 방제(防除)되었다. 17. 퇴비중(堆肥中) 서식(棲息)하여 양송이를 가해(加害)하는 4종(種)의 선충과 5종(種)의 응애(類)는 퇴비(堆肥)를 $60^{\circ}C$에서 6시간(時間) 정열(頂熱)시키므로서 방제(防除)할 수 있었다.

  • PDF