• Title/Summary/Keyword: 사장교의 시공

Search Result 70, Processing Time 0.025 seconds

Analysis of Construction Cost of the Second-Dolsan Bridge and the Sepung Bridge (제2돌산대교와 세풍대교의 공사비 분석)

  • Seo, Young-Jae;Lee, Kyoung-Jae;Kim, Jae-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.21-22
    • /
    • 2010
  • Recently, many concrete cable-stayed bridges are under construction for economic benefits. This study deals with analyzing construction cost of the Second-Dolsan Bridge and the Sepung Bridge as examples of concrete cable-stayed bridges.

  • PDF

2-Dimensional Section Model Experimental Study of 1200m Span Cable-Stayed Bridge (주경간 1200m급 사장교 2차원 단면모형실험)

  • Lee, Ho-Yeop;Chun, Nak-Hyun;Oh, Seung-Taek;Lee, Hak-Eun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.76-76
    • /
    • 2011
  • 현재까지 시공된 사장교 중, 주경간이 가장 긴 교량은 중국의 수통대교(1088m)이다. 이에 버금가는 사장교로 홍콩의 스톤커터교(1018m) 역시 주경간장이 1000m가 넘는다. 바야흐로 사장교 역시 주경간 1000m의 시대가 열린 것이다. 우리나라 역시 세계적 흐름에 맞추어 주경간 800m의 인천대교(세계 5위)를 시공한바 있다. 이와 같이 교량의 초장대화는, 교량 건설 분야에서 기술경쟁력의 지표가 될 뿐만 아니라 세계 건설 시장의 큰 흐름이라고 할 수 있다. 이에 본 연구는 세계적 추세에 발맞추어, 국내 각계의 건설 전문가들이 모여 만든 초장대 교량 사업단의 기술 혁신 사업의 일환으로 이루어졌다. 교량이 장대화 되면서 바람의 의한 영향이 중요해진다는 것은 주지의 사실이다. 특히 사장교와 현수교 같은 특수 교량의 경우, 정적 및 동적 내풍 성능이 반드시 고려되어야만 한다. 본 연구에서는 주경간 1200m의 사장교를 가정하고, 이 사장교의 내풍 단면을 개발, 그 단면에 대한 정적 및 동적 내풍 성능을 평가하고자 하였다. 정적 내풍 성능으로는 단면의 형상에 따른 풍하중을 파악하고자 했으며, 동적 내풍 성능으로는 풍속에 따른 교량의 연직방향 변위 및 플러터 속도를 파악하고자 하였다. 이 실험은 추후에 3차원 전교모형실험의 기본 데이터로 활용하였다. 본 실험을 통해 개발된 단면의 등류 및 난류 상태에서의 영각별 정적 공기력계수를 계산해내었고, 설계풍속이 54.7m/s일때 한계풍속 65.64m/s(거마대교 기준)하에서의 중앙 경간의 풍속별 평균 변위를 측정하였으며, 이를 토대로 이 교량의 영각별 플러터 속도를 계산해 내었다.

  • PDF

Determination of Effective Flange Width in Single Plane Cable-Stayed Concrete Bridge (1면 케이블 콘크리트 사장교의 유효플랜지폭 결정에 관한 연구)

  • Lee, Hwan-Woo;Kim, Kwang-Soo;Kang, Ho-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.343-351
    • /
    • 2010
  • Bending and axial compressive stresses are distributed across the whole upper flange of a box girder bridge which has the span-to-depth ratio (B/L) of below 0.5, according to Korea Bridge Design Specifications (Minister of Land, Transport and Maritime Affairs, 2005). Shear lag phenomenon, however, can take place in the construction phase of cable-stayed bridge, in which stresses combining bending moment due to dead weight and cable vertical compression are induced. This study aims to analyze the effective width of flange over which composite stresses are given, which should be calculated during the construction phase of stiffening girder of single plane cable-stayed box girder bridge. The study results indicate that the full width of stiffening girder can be regarded as the effective flange width when the span-to-depth ratio for the deck is below 0.38. In other words, the area, where shear lag is taken into consideration, is larger than the width of box girder in single plane cable-stayed box girder bridges. Therefore, the current practice of considering the full width as the effective flange width regardless of changes of the span-to-depth ratio during the construction stage can produce an unsafe bridge. If the effective flange width is determined according to the single span structural system in the early stage of construction when the span-to depth ratio for the deck is high and composite stresses of every part expect each end of the bridge are calculated, it can result in a safe structural design. Since the span-to-depth ratio gradually decreases, however, it is appropriate to determine the effective width of flange on the basis of the full width and the cantilever structural system.

3-D Aeroelastic Model Test of a Cable-Stayed Bridge with a Main Span of 1,200m (주경간장 1,200m 사장교의 3차원 풍동실험)

  • Sin, Seung-Hwan;Kim, Yeong-Min;Gwak, Yeong-Hak;Lee, Hak-Eun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.70-70
    • /
    • 2011
  • 사장교의 적용지간이 증가하여 초장대화하면서 구조안전성을 확보하기 위한 다양한 노력이 시도되고 있다. 본 연구에서는 현재까지 시도된 적이 없는 주경간 1,200m 사장교의 내풍안정성을 검토하기위하여 3차원공탄성 모형을 제작하고 풍동실험을 수행하였다.(그림1 참조) 실험대상 구조물은 내풍안정성 증대를 위해 유선형 박스거더를 채용하고 케이블이 거더와 함께 비틀림에 저항하도록 2면 케이블을 적용하였다. 구조적인 측면에서는 보강형 자중감소를 위해 전경간을 강박스로 계획하였으며 측경간에 부반력제어를 위한 Counter Weight을 적용하였다. 실험대상 구조물은 완성계, 가설계95%, 가설계50%, 가설계45%로 모형을 해체하면서 진행하였고 가설단계 별로 내풍케이블의 수량과 형상을 달리하여 내풍안정성 개선효과를 확인하고자 하였다. 3차원 풍동실험 결과 완성계에서 교량의 안전성에 심각한 문제를 발생시킬 수 있는 와류진동, 플러터, 버페팅과 같은 유해한 진동현상이 발견되지 않았으며, 시공중 내풍안정성 확보를 위하여 대상교량에 내풍케이블을 설치하고 내풍케이블의 수량 및 배치형상에 따른 진동제어 효과를 검토하였다. 본 실험은 현재 풍동실험 요소기술을 이용하여 1,200m급 사장교 풍동실험을 수행하였고 이에 따라 교량이 초장대화 되면서 스케일다운에 따른 보강형질량, 케이블 간격 등 실험모형 제작상 문제점을 확인 할 수 있었으며 이러한 경험을 토대로 향후 1,000m 이상급 초장대 사장교 내풍설계를 위한 기초자료로 활용이 가능할 것으로 사료된다.

  • PDF

Measurement and Analysis of Wind Response of InCheon Bridge (인천대교의 풍응답 계측 및 분석)

  • Kim, Saang-Bum;Im, Duk-Ki;Park, Hyun-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.340-343
    • /
    • 2011
  • 장대 케이블 교량의 풍응답을 계측할 수 있는 무선센서네트워크 기반의 풍응답 계측시스템을 개발하고, 이를 사용하여 인천대교의 시공단계별로 고유진동수, Mode Shape과 같은 Modal Parameters의 변화를 추정하고 보강형에서의 풍압분포와 보강형, 주탑, 케이블의 가속도를 계측하여 내풍 성능을 분석하였다. 개발된 계측 시스템은 인천대교 사장교의 전체 거동을 계측할 수 있도록, 1.5km 범위에 넓게 분포된 최대 55 Nodes에서 최대 1kHz의 동기화된 계측을 수행할 수 있으며, 각 Node별로 3축가속도나 풍압을 측정할 수 있다. 전체 Node에서 가속도를 계측하는 경우에는 최대 165 Channel을 1kHz로 측정할 수 있다. Modal 해석의 경우에, 고가교, 접속교, 사장교 주탑, 보강형, 케이블의 시공 단계별 동특성의 변화를 추정하였으며, 고가교에서는 모드해석을 통해 역추정한 구조계수를 정적재하실험 및 실험실에서의 Mold 시험결과와 비교하였으며 사장교 케이블에서는 케이블 댐퍼의 성능을 분석하였다. 또한 인천대교 보강형에서의 풍압분포를 계측하였으며, 풍압의 공간상관관계를 분석하였고, 풍하중 및 풍진동 특성을 분석하여 가속도 계측 결과와 비교하였다. 계측 및 분석 결과를 바탕으로 장대교량의 내풍성능을 확보하고 향상시키는데 활용할 수 있을 것으로 기대한다.

  • PDF

Construction Stage Analysis of Cable-Stayed Bridges Using the Unstrained Element Length Method (무응력길이법을 이용한 사장교의 시공단계 해석)

  • Park, Se Woong;Jung, Myung Rag;Min, Dong Ju;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.991-998
    • /
    • 2016
  • The propose of this study is to demonstrate how efficiently and accurately the construction stages of cable-stayed bridges are analyzed using the unstrained length method (ULM) in which all unstrained element lengths are determined from a simplified analytical method (Jung et al., 2015). A forward analysis of cable-stayed bridges using the commercial FEA program, MIDAS is sequentially carried out considering the lack of fit force but the ULM is able to analyze a intermediate construction stage directly by taking the corresponding unstrained lengths of the construction stage model simply. The closing load step analysis is achieved by loading the pavement and counter weight forces in reverse. An Incheon bridge model is analyzed using the present ULM and the commercial program, respectively, and the two analysis results are compared.

Analytical Study for Ultimate Behavior of Steel Cable-stayed Bridges under Construction Stage (시공중 강사장교의 극한거동에 대한 해석적 연구)

  • Lee, Joo-Tak;Kim, Seung-Jun;Kim, Jong-Min;Choi, Jun-Ho;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.691-704
    • /
    • 2011
  • This paper presents an investigation on the ultimate behavior of steel cable-stayed bridges in the construction stage, considering various geometric nonlinearities and material nonlinearities. To numerically determine the state of cable-stayed bridges in the construction stage, initial shape analysis and construction stage analysis via backward process analysis were done sequentially. Then nonlinear analysis of the state under the construction load condition, considering the weight of the derrick crane and the key segment of the girder loaded onto the tip of the center span, was performed to investigate the ultimate behavior of the structure. The effects of the girder-mast stiffness ratio, the cable-arrangement types, and the area of the stay cables on the ultimate behavior were also extensively investigated. Moreover, the results of the ultimate analysis, considering both geometric nonlinearities and material nonlinearities, were compared with the results of the geometric nonlinear analysis, for a more meaningful investigation of the ultimate behavior of steel cable-stayed bridges in the construction stage.