Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.351-353
/
2000
대부분의 검색 엔진에서의 사용자의 정보 검색 요구에서 나타나는 키워드 장벽의 문제점을 해결하고 사용자의 정보 검색 과정에 도움을 주기 위해 디렉토리 서비스를 제공한다. 하지만 디렉토리 서비스에서 새로운 웹 사이트를 지속적으로 인덱스하여 하나의 주제어에 너무 많은 수의 웹 사이트가 부여되어 있으면 사용자의 검색 편의를 위해서 재분류하여 세분류할 필요가 있다. 따라서 본 논문에서는 한 주제어에 과다하게 부여된 웹 사이트들을 세분류하기 위해 기존의 문서 클러스터링 기법을 사용하여 클러스터링 할 때 생기는 문제점을 보완한 문서 클러스터링 시스템을 소개한다.
Proceedings of the Korea Multimedia Society Conference
/
2004.05a
/
pp.608-611
/
2004
사용자 웹 방문 패턴 발견으로써의 사용자 클러스터링은 웹 사이트를 이용하는 사용자들의 취향과 행동방식을 얻어내는데 매우 유용하다. 또한 이러한 정보는 웹 개인화나 웹 사이트를 재구성 하는 데 필수적 이 다. 본 논문에서 사용자 웹 방문 패스를 클러스터링 하기 위한 시간적으로 효율적이며, 패스 특성을 보다 정확하게 표현하여 클러스터링 할 수 있는 알고리즘이 제안되며, 제안된 알고리즘은 패스 간의 유사도 측정을 통한 클러스터링, 하이퍼플랜을 이용한 K-평균 클러스터링의 2단계 과정으로 이루어져 있다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2003.05a
/
pp.410-415
/
2003
인터넷의 발전으로 전 세계적으로 다양한 인터넷 서비스들이 점차 확대되고 있으며, 특히 수익을 내는 방법으로서의 인터넷 전자상거래는 큰 비중을 차지하고 있다. 이에 수많은 사이트, 쇼핑몰은 상품과 고객들의 수많은 데이터를 데이터베이스 모듈로 관리하고 있다. 이렇게 고객에게 맞는 상품을 추천하기 위해 효율적으로 클러스터링 하는 방법이 요구된다. 이에 본 논문에서는 여러 클러스터링 방법 중에서 퍼지 이론을 기반으로 개선된 클러스터링 알고리즘을 이용하여 상품을 추천하고자 한다 이 방법은 클러스터의 개수가 한정되어 있는 기존의 방법에 클러스터의 유사도에 따른 유사성을 부여함으로써 더 세밀하고 정확한 클러스터링을 가능케 하여 이에 따른 개인의 성향에 맞게 개인화된 상품을 추천하는 시스템을 설계하고자 한다.
Many users visit websites every day to perform information retrieval, shopping, and community activities. On the other hand, there is intense competition among sites which attempt to profit from the Internet users. Thus, the owners or marketing officers of each site try to design a variety of marketing strategies including cooperation with other sites. Through such cooperation, a site can share customers' information, mileage points, and hyperlinks with other sites. To create effective cooperation, it is crucial to choose an appropriate partner site that may have many potential customers. Unfortunately, it is exceedingly difficult to identify such an appropriate partner among the vast number of sites. In this paper, therefore, we devise a new methodology for recommending appropriate partner sites to each site. For this purpose, we perform site clustering from the perspective of visitors' similarities, and then identify a group of sites that has a number of common customers. We then analyze the potential for the practical use of the proposed methodology through its application to approximately 140 million actual site browsing histories.
Proceedings of the Korea Inteligent Information System Society Conference
/
2002.11a
/
pp.297-302
/
2002
특정 영역에 대해 사용자에게 관련 정보를 제공하는 서비스를 위해 정보 에이전트를 개발하고 있다. 이 시스템은 웹 상에서 문서를 수집해 오는데 특정 영역과 관련한 지식베이스를 토대로 하고 있는데, 이들 중 몇몇 전문 사이트 내의 정보가 많이 포함되어 있음을 볼 수 있다. 그러므로 전문 사이트 내의 관련 문서 수집은 중요한 의의가 있다. 본 논문에서는 이들 전문 사이트 내의 전문 문서 수집을 위해 문서간의 유사성을 토대로 클러스터링 한다. 즉, 문서내의 텀(term)과 HTML 태그(tag), 지식베이스의 WordNet 계층구조를 data로 하고 SVD(Singular Value Decomposition)을 사용하여 문서간의 관계를 밝혀내었다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.12
no.5
/
pp.2375-2382
/
2011
The user clustering for web navigation pattern discovery is very useful to get preference and behavior pattern of users for web pages. In addition, the information by the user clustering is very essential for web personalization or customer grouping. In this paper, an algorithm for clustering the web navigation path of users is proposed and then some special navigation patterns can be recognized by the algorithm. The proposed algorithm has two clustering phases. In the first phase, all paths are classified into k-groups on the bases of the their similarities. The initial solution obtained in the first phase is not global optimum but it gives a good and feasible initial solution for the second phase. In the second phase, the first phase solution is improved by revising the k-means algorithm. In the revised K-means algorithm, grouping the paths is performed by the hyperplane instead of the distance between a path and a group center. Experimental results show that the proposed method is more efficient.
Recently. many researches on the personalization of a web-site have been actively made. The web personalization predicts the sets of the most interesting URLs for each user through data mining approaches such as clustering techniques. Most existing methods using clustering techniques represented the web transactions as bit vectors that represent whether users visit a certain WRL or not to cluster web transactions. The similarity of the web transactions was decided according to the match degree of bit vectors. However, since the existing methods consider only whether users visit a certain URL or not, users' interestingness on the URL is excluded from clustering web transactions. That is, it is possible that the web transactions with different visit proposes or inclinations are classified into the same group. In this paper. we propose an enhanced transaction modeling with interestingness weight to solve such problems and a new similarity measuring method that exploits the proposed transaction modeling. It is shown through performance evaluation that our similarity measuring method improves the accuracy of the web transaction clustering over the existing method.
Most of information in Web2.0 is constructed by users and can be classified by tags which are also constructed and added by users. However, as we known, referring by the related works such as automatic tagging techniques and tag cloud's construction techniques, the research to be classified information and resources by tags effectively is to be given users which is still up to the mark. In this paper, we propose and implement a clustering system that does mapping each other according to relationships of the resource's tags collected from Web and then makes the mapping result into clusters to retrieve images. Tn addition, we analyze our system's efficiency by comparing our proposed system's image retrieval result with the image retrieval results searched by Flickr website.
Proceedings of the Korean Information Science Society Conference
/
2008.06c
/
pp.305-309
/
2008
기존의 온톨로지 구축에 관한 연구들을 살펴보면 개념의 상 하위 관계와 관련한 연구 또는 기구축된 도메인에 특화된 지식베이스에 기반한 도메인 온톨로지 구축 연구가 주를 이룬다. 그러나 개념과 개념간의 관계는 상 하위 구조와 같은 단순한 계층적 구조로는 그 다양한 특성을 표현할 수 없으며, 도메인 온톨로지를 구축하는 경우에 기구축된 데이터베이스와 같은 개념간 관계가 잘 정의된 데이터는 반드시 필요하였다. 예를 들면, 다양한 지식이 구축되어 있는 데이터베이스나 특정 도메인에 관한 전문 사이트(예 : 의학정보, 약학정보 사이트) 등이 있어야 개념간의 다양한 관계가 표현되어 있는 온톨로지를 구축할 수 있었다. 본 연구에서는 도메인 온톨로지를 구축함에 있어서 이러한 제약을 극복하기 위하여 도메인에 특화된 문서들을 웹 검색을 통하여 수집하였고, 수집된 문서 데이터를 이용하여 자동으로 도메인에 특화된 개념들을 추출하고 이들 개념들을 클러스터링함으로써 개념들간의 다양한 관계를 표현할 수 있는 도메인 온톨로지의 자동 구축 가능성을 제시한다.
Proceedings of the Korean Information Science Society Conference
/
2000.10a
/
pp.201-203
/
2000
변화하는 경쟁적 인터넷 환경에서 E-Business의 성공적인 운영은 웹 사이트를 이용하는 고객들의 행위를 얼마나 잘 이해하느냐에 달려있다. 폭발적으로 늘어나는 웹 사이트 중에서 많은 사용자들을 유치하고 유지하기 위해서는 고객 개개인의 특성을 분석해서 특성화된 특성화된 서비스를 제공하는 것이 중요하다. 이 논문에서는 웹 서버에 의해 수집되는 로그파일로부터 사용자들이 빈번하게 함께 접근하는 페이지들을 기반으로 웹 페이지에 대한 클러스터링을 수행하고 이러한 웹 페이지의 클러스터를 이용해서 유사한 행동패턴을 가진 사용자들을 분류함으로써 특성화된 서비스를 제공하기 위한 일련의 기법들을 제안한다. 특히 클러스터링을 수행하는 웹 로그에 시간적인 요소를 고려한 제약조건을 둠으로써 좀더 유용한 지식을 찾아낼 수 있는 방안을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.