• Title/Summary/Keyword: 사이클링

Search Result 304, Processing Time 0.025 seconds

A Development of Design Catalogue System for Recycling (리사이클링 고려 설계카탈로그 시스템의 구축)

  • Lee, Kun-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.177-186
    • /
    • 2005
  • Today the tastes of consumers change rapidly and the kinds of the products become diverse. Therefore the product life cycle becomes shorter and shorter. Moreover the save of resources and the recycling for the environmental preservation are the essential theme. On this the necessary information for the product development increases enormously. For the right use of the information the design process should be supported by the proper design tool. For this the 'design catalogue system for recycling' is suggested here. This system consists of four parts, that is, 'the existing automobile system database', 'working principle database', 'assessment system of the ease of disassembly' and 'one's own product development database'. By the use of this system the product development period could be reduced about $30\%$ drastically.

Implementation of Image Learning Model for Recycling (분리수거를 위한 리사이클링 봇 이미지데이터 학습모델 구현)

  • Noh, Yujeong;Shin, Boksuk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.527-529
    • /
    • 2021
  • This paper focuses on the implementation of machine learning model for Recycling bot, which is a platform service of recycling education. The recycling bot applied with a AI model using collected image set. The experiment confirms that classified by the model result are accurate.

  • PDF

Current Status of Zinc Smelting and Recycling (아연의 제련 및 리사이클링 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.30-41
    • /
    • 2019
  • Global production of zinc is about 13 million tons and zinc is the fourth-most widely used primary metal in the world following iron, aluminum and copper. When zinc is recycled to produce secondary zinc, it can save about 75 % of the total energy that is needed to produce the primary zinc from ore, and in therms of $CO_2$ emissions reduced by about 40 %. However, since zinc is mainly used for galvanizing of steel, the recycling rate of zinc is about 25 %, which is lower than other metals. The raw materials for recycling of zinc include dusts generated in the production of steel and brass, sludge in the production process of non-ferrous metals, dross in the melting of zinc ingots or hot dip galvanizing, waste batteries, and metallic scrap. Among them, steelmaking dust and waste batteries are most actively recycled up to now. Most of the recycling process uses pyrometallurgical methods. Recently, however, much attention has been given to a combined process of pyrometallurgical and hydrometallurgical processes.

Hydraulic Cleaning Effect on Fouling Mechanisms in Pressurized Membrane Water Treatment (가압식 멤브레인 수처리에서 수리학적 세정이 파울링 기작에 미치는 영향)

  • Charfi, Amine;Jang, Hoseok;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.519-527
    • /
    • 2017
  • Membrane fouling is the main issue hindering the expansion of low pressure membrane processes for surface water treatment. Therefore, applying periodic hydraulic cleaning for fouling control should be well optimized. Better understanding of membrane fouling associated with periodic hydraulic cleaning would be useful to optimize membrane cleaning strategies. By comparing experimental permeability data with the classical Hermia blocking laws, this study aims at analyzing membrane fouling and understanding dominant fouling mechanisms occurring when filtering a synthetic surface water solution with a pressurized membrane process during six filtration cycles of 30 min each, separated with cyclic cleaning of 1 min by backwashing and forward flushing separately and combined. When applying single cleaning technique, membrane fouling during the first cycles was controlled by complete blocking mechanism while the last cycles were dominated by cake formation. Nevertheless, when combining cleaning technique better membrane regeneration was obtained and fouling was mainly due to cake formation.

Recycling of Copper Scrap (동스크랩의 리사이클링)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.3-14
    • /
    • 2019
  • Copper is one of the first metals utilized by humankind about 11,500 years ago. But copper is not plentiful metallic element in the earth's crust. Copper has a high thermal and electric conductivity and is relatively corrosion resistant. In principle copper is virtually 100 % recyclable as an element without loss of quality. The recycling of copper scrap reduces the energy consumption and environmental burden, comparing to the primary metal production. Currently, approximately 30% of the global copper supply provides by recycling. Copper scrap is smelted in primary and secondary smelter. Type of furnace and process steps depend on the quality and grade of scrap. Depending on copper content of the secondary raw material, refining is required, which is usually done through electrorefining. This work provides an overview of the primary copper production and recycling process.

Cycling Packet Dropping Mechanism for Assured Forwarding Packets in Internet (인터넷에서 Assured Forwarding 패킷을 위한 사이클링 패킷 폐기 메커니즘)

  • Kim, Su-Yeon;Gang, Hyeon-Guk
    • The KIPS Transactions:PartC
    • /
    • v.9C no.2
    • /
    • pp.221-226
    • /
    • 2002
  • Cycling Packet Dropping mechanism we proposed in this paper adaptively drops packets, as predicting traffic pattern between each cycle. Therfore the proposed mechanism makes up for the drawback of RIO mechanism and minimizes errors being capable of predicting in Dynamic and Strict Packet Dropping mechanism. And we executed a simulation and analyzed the throughput and packet drop rate based on the Sending Drop Precedence changing dynamically depending on the network traffic. The results show that the proposed mechanism provides better performance on drop precedence levels and stricter drop precedence policy for AF class.

Current Status of Lead Smelting and Recycling (납의 제련 및 리사이클링 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.3-14
    • /
    • 2019
  • Lead is one of the common non-ferrous metals used in modern industry. The usage of lead continues to increase and has risen from 5 million tonnes per year worldwide in the 1970s to 11 million tonnes in the 2010s. In principle lead is virtually 100 % recyclable as an element without loss of quality. The recycling of lead scrap reduces the energy consumption and environmental burden, comparing to the primary metal production. Therefore production of secondary lead from scrap has been steadily growing and at present it meets approximately 60 % of usage worldwide. Lead scrap (mainly lead-acid battery) is smelted in primary and secondary smelter. Most secondary lead smelting were performed in a shaft-type furnace (blast furnace), rotary furnace and reverberatory furnace. The lead bullion is either cast into ingots and re-melted in refining kettles or refining is performed on the hot lead bullion immediately after production. This work provides an overview of the primary lead production and recycling process.