• Title/Summary/Keyword: 사이드 임팩트 빔

Search Result 4, Processing Time 0.017 seconds

Development of Vehicle Door Side Impact Beam with High Tensile Steel using Roll Forming Process (고장력 소재로 롤-포밍 공법에 의한 자동차 도어 사이드 임팩트 빔 개발)

  • Son, Hee-Jin;Kim, Sung-Yuk;Oh, Beom-Seok;Kim, Key-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.82-87
    • /
    • 2012
  • The purpose of this study is to produce a side impact beam with high tensile steel using a roll forming process. The door side impact beam plays an important roll in a car because it protects passengers from external crash. The roll forming process is a continuous bending process wherein a long metal sheet is bended as it continuously passes several rolls. The characteristic of this study is that an impact beam is produced by a continuous process using a ultra high strength steel without a hardening heat treatment. A model was determined by analysing plasticity of a cross section shape considering high strength. Design parameters of the impact beam was determined by crash-analysing the model. Workpiece products were manufactured by designing dies for roll forming and setting them up in a following process line. Results of a bending test and a FEM analysis was considered and reviewed.

Design Improvement of Composite Door Section Impact Beam by Three-Point Bending Analysis (3점 굽힘 하중 해석을 통한 복합재 도어 임팩트 빔 단면형상 설계개선)

  • Ha, Jung-Chan;Oh, Sung Ha;Baek, In-Seok;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.80-87
    • /
    • 2020
  • The currently observed trend in car manufacturing is to increase energy-efficiency by producing lighter cars. This study examines the replacement of particular parts, specifically around the impact beam, with material composites 30% lighter than conventional steel currently used. The shape of the impact beam was determined as the trapezoidal cross-sectional area with central reinforcement, using three-point bending analysis. A prototype was fabricated based on the findings of our study and its performance was evaluated by the three-point bending analysis; 2 ply of aramid applied for its displacement. The performance of the final prototype for the door assembly was evaluated using a side-door strength test, which resulted to measured initial strength of 10.5 KN and intermediate strength of 15.6 KN. This research provides a promising solution for better impact beam manufacturing.

Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Second Report) : Application to Automotive Side-Door Impact Beams (초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제2보) : 자동차 사이드 도어 임팩트 빔에의 적용)

  • Nahm, Yoon-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.8-15
    • /
    • 2011
  • The computer-based simulation tools are currently used overwhelmingly to simulate the performance of automotive designs. Then, the search for an optimal solution that satisfies a number of performance requirements usually involves numerous iterations among several simulation tools. Therefore, meta-modeling techniques are becoming widely used to build approximations of computationally expensive computer analysis tools. The set-based approach proposed in the first report of a four-part paper has been a test bed for the innovation of vehicle structure design process in the Structural Design and Fabrication Committee of JSAE(Society of Automotive Engineers of Japan). In the second report, the proposed design approach is illustrated with a side-door impact beam design example using meta-modeling techniques.

Development Process of Side Impact Beam for Automotive Light-Weighting Door using Sheet Type (자동차 도어 경량화를 위한 판재형 사이드 임팩트 빔 개발 프로세스)

  • Lee, I.C.;Lee, T.K.;Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.130-137
    • /
    • 2015
  • This paper presents the development process of automotive side door impact beam for passenger cars. Weight reduction while maintaining functional requirements is one of the major goals in the automotive industry. In this study, thin-walled side door beam using quenchable boron steel was designed to reduce the weight of conventional side door tubular one. In order to estimate design for the proposed side door beams, the static side impact protection tests(FMVSS 214) were conducted using the finite element method. Based on the simulation results, geometry modification of the side door beam has been performed via creating new reinforcing ribs. Furthermore, the manufactured frontal impact beam was mounted on the real side door of a passenger car, and then static impact protection test carried out. It is concluded that the presented test results can provide significant contribution to the stiffness of side door impact beams and light-weighting door research.