• 제목/요약/키워드: 사이드 멤버

검색결과 27건 처리시간 0.023초

구조용 FRP부재의 적층구성이 흡수에너지특성에 미치는 영향

  • 최효석;김영남;양인영
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 1999년도 춘계 학술논문발표회 논문집
    • /
    • pp.25-30
    • /
    • 1999
  • 자동차의 정면 충돌시 발생하는 충돌에너지를 흡수하여 인명을 보호하기 위한 장비중 구조 역학적 관점에서 고려될 수 있는 것으로 범퍼와 사이드멤버(Side Member)가 있다. 이들중 범퍼는 시속 8km/hr 이하의 저속 충돌시에 탄성 변형에너지로서 충돌에너지를 흡수하는 역할을 하나, 그 이상의 고속 정면 충돌시에는 일반적으로 사이드멤버가 충돌에너지의 60∼70%를 부재의 연속적인 대변형에 의한 소성에너지에 의해 흡수하고 있다. (중략)

  • PDF

저속충돌조건에서 효과적인 충돌에너지흡수를 위한 알루미늄 크래쉬 박스의 비드형상 효과 (Effect of Bead Shape in Aluminum Crash Box for Effective Impact Energy Absorption Under Low- Velocity Impact Condition)

  • 이찬주;이선봉;고대철;김병민
    • 대한기계학회논문집A
    • /
    • 제36권10호
    • /
    • pp.1155-1162
    • /
    • 2012
  • 알루미늄 크래쉬 박스는 저속충돌조건에서 프론트 사이드 멤버를 변형을 방지하기 위한 부품이다. 본 연구에서는 저속충돌조건에서 비드형상이 알루미늄 크래쉬 박스의 충돌성능에 미치는 영향을 분석하였다. Edge concave, surface convex 와 surface concave 타입의 비드형상들에 대한 충돌해석 및 실험을 수행하여 비드가 없는 normal 타입의 알루미늄 크래쉬 박스의 충돌성능과 비교분석하였다. 충돌성능은 저속충돌조건에서 크래쉬 박스의 초기 최대하중 및 충돌에너지 흡수능으로 평가하였다. 이를 검증하기 위해 알루미늄 크래쉬 박스와 결합된 프론트 사이드 멤버에 대해 저속충돌실험 수행하고, 이를 분석하였다. Surface concave 타입의 비드가 삽입된 알루미늄 크래쉬 박스 경우, 프론트 사이드 멤버의 변형을 방지할 수 있음을 확인하였다.

자동차용 프론트 사이드 멤버의 일체복합성형해석 및 보강판재의 위치결정 (Determination of Position for Reinforcement Blank at Simultaneous Forming Analysis of Automotive Front Side Member)

  • 윤석진;김헌영;김관회;윤재정;송종호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.178-182
    • /
    • 2008
  • Automotive manufacturers lay their eyes on the new manufacturing technologies because of the strengthened competition. Among them, a simultaneous forming is one of the innovative forming technologies to be able to reduce production time and cost. Several parts can be simultaneous manufactured by process, while the conventional stamping demands the same number of die sets with the number of parts. In this study, the automotive front side member was manufactured by the simultaneous forming. The position and the size of initial blank were determined by forming analysis and try-outs, and the blank movement during the forming was controlled by introducing the pilot pin.

  • PDF

프론트 사이드 멤버의 경사 충돌 성능 (Crash Performance of Front Side Member Impacted with Angle)

  • 강성종
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.52-59
    • /
    • 2014
  • Front impacted SUV vehicle shows that the front parts of side members are collapsed by the bending due to the transverse load exerted at the end of side members. Side member models were impacted with various angles in order to study the crash performance according to the impact angle. Even for the small impact angle of $10^{\circ}$, crash performance seriously deteriorated and the deformations for impact angle $15^{\circ}$ were similar to those from the front body impact analysis. In addition, the angled front impact analysis for the straight member with hat section was carried out and the effects of inner reinforcement shape on crash performance was investigated.

자동차용 사이드 멤버 일체복합성형시 보강판재의 형상 및 위치 결정 (Determination of Shape and Position for Reinforcement Blank at Simultaneous Forming of Automotive Side Member)

  • 김헌영;황상희;김관회;윤재정;송종호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.223-227
    • /
    • 2007
  • New forming technologies are being introduced to automotive manufacturing processes. Among them, a simultaneous forming is one of the innovative forming technologies to be able to reduce production time and cost. Several parts can be simultaneously manufactured by the process, while the conventional stamping demands the same number of die sets with the number of parts. In this study, the automotive rear floor side member was manufactured by the simultaneous forming. The position and the size of initial blank were determined by forming analyses and try-outs, and the blank movement during the forming was controlled by introducing the spotweld.

  • PDF

충돌에너지 흡수효율 최대화를 위한 자동차 사이드 멤버 최적 설계에 관한 연구 (A Study on the Optimum Design of the Automotive Side Member to Maximize the Crash Energy Absorption Efficiency)

  • 이정환;정낙탁;서명원
    • 한국정밀공학회지
    • /
    • 제30권11호
    • /
    • pp.1179-1185
    • /
    • 2013
  • In this study, the design optimization of the automotive side member is performed to maximize the crash energy absorption efficiency per unit weight. Design parameters which seriously influence on the frontal crash performance are selected through the sensitivity analysis using the Plackett-Burman design method. And also the design variables, which are determined from the sensitivity analysis, are optimized by two methods. One is conventional approximate optimization method which uses the statistical design of experiments (DOE) and response surface method (RSM). The other is a methodology derived from previous work by the authors, which is called sequential design of experiments (SDOE), to reduce a trial and error procedure and to find an appropriate condition for using micro-genetic algorithm. The proposed optimization technique shows that the automotive side member structure can be designed considering the frontal crash performance.

프론트 사이드 멤버의 비틀림 저감을 위한 성형공정 설계 (Forming process design for the twist reduction of an automotive front side member)

  • 인정제
    • 한국기계기술학회지
    • /
    • 제13권1호
    • /
    • pp.105-112
    • /
    • 2011
  • Increasing needs for light weight and high safety in modern automobiles induced the wide application of high strength steels in automotive body structures- The main difficulty in the forming of sheet metal parts with high strength steel is the large amount of springback including sidewall curl and twist in channel shaped member parts- Among these shape defects, twist occurs frequently and requires numerous reworks on the dies to compensate the shape deviation- But until now, it seems to be no effective method to reduce the twist in the forming processes- In this study, a new forming process to reduce the twist deformation during the forming of automotive structural member was suggested- This method consists of forming and restriking of embosses on the sidewall around the stretch flanging area of the part- and was applied in the forming process design of an automotive front side inner member with high strength steel- To evaluate the effectiveness of the method, springback analysis using $Pamstampa^{tm}$ was done- Through the analysis results, the suggested method was proven to be effective in twist reduction of channel shaped parts with stretch flanging area.

컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 AA6061 리어 서브-프레임 사이드멤버의 하이드로-포밍 공정 개발 (Hydro-forming Process Development of Automotive AA6061 Rear Sub-frame Side Member by Computer Aided Engineering (CAE))

  • 김기주;김재현;최병익
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.45-49
    • /
    • 2010
  • The automotive industry has shown a growing interest in tube hydroforming during the past years. The advantages of hydroforming (less thinning, a more efficient manufacturing process, etc.) can, for instance, be combined with the high strength of extra high strength steels, which are usually less formable, to produce structural automotive components which exhibit lower weight and improved service performance. Design and production of tubular components require knowledge about tube material and forming behavior during hydroforming and how the hydroforming operation itself should be controlled. These issues are studied analytically in the present paper. In this study, the whole process of rear sub-frame parts development by tube hydroforming using AA6061 material is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Engineering) to confirm hydroformability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape in automotive rear sub-frame by hydroforming process were carefully investigated. Overall possibility of hydroformable rear sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending and hydroforming. In addition, all the components of prototyping tool are designed and interference with press is examined from the point of geometry and thinning.