• 제목/요약/키워드: 사이드부재

검색결과 19건 처리시간 0.025초

경량화용 사이드부재의 적층구성 및 단면형상 변화에 따른 에너지흡수 특성 (Energy Absorption Characteristics of Side Member for Light-weight Having Various Stacking Condition and Shape of Section)

  • 이길성;서현경;양인영;심재기
    • 대한기계학회논문집A
    • /
    • 제31권6호
    • /
    • pp.671-678
    • /
    • 2007
  • Front-side members of automobile, such as the hat shaped section members, are structures with the greatest energy absorbing capability in a front-end collision of vehicle. This paper was performed to analyze energy absorption characteristics of the hat shaped section members, which are basic shape of side member. The hat shaped section members consisted of the spot welded side member which was utilized to an actual vehicle and CFRP side member for lightweight of vehicle structural member. The members were tested under static axial loading by universal testing machine. Currently, stacking condition related to the collapse characteristics of composite materials is being considered as an issue fer the structural efficiency and safety of automobiles, aerospace vehicles, trains, ships even elevators during collision. So, energy absorption characteristics were analyzed according to stacking condition and shape of section and compared the results of spot welded side member with those of CFRP side member.

단면형상이 다른 Al/CFRP 혼성박육부재의 축압궤특성 (Axial Collapse Characteristics of Aluminum/Carbon Fiber Reinforced Plastic Composite Thin-Walled Members with Different Section Shapes)

  • 황우채;이길성;차천석;김지훈;나승우;양인영
    • 대한기계학회논문집A
    • /
    • 제38권9호
    • /
    • pp.959-965
    • /
    • 2014
  • 본 연구에서는 Al/CFRP 혼성 구조부재가 승용차용 사이드부재에 사용될 것을 상정하여 Al/CFRP 혼성 구조부재의 단면형상의 변화, 최외각층의 변화가 압궤 특성에 어떠한 영향을 미치는가를 실험적으로 고찰하여 수송기계의 경량화를 위한 사이드부재로 사용될 수 있는 설계 데이터를 얻고자 하였다. 실험결과 다음과 같은 결론을 얻었다. 최외층각이 $0^{\circ}$로 적층된 원형 Al/CFRP 혼성 충격 흡수부재가 사각 Al/CFRP 혼성 충격 흡수부재 보다 52,9%, 모자형 Al/CFRP 혼성 충격 흡수부재 보다 49.93% 높게 나타났으며, 최외층각이 $90^{\circ}$로 적층된 경우 원형 Al/CFRP 혼성 충격 흡수부재 사각 Al/CFRP 혼성 충격 흡수부재 보다 50.49%, 모자형 Al/CFRP 혼성 충격 흡수부재 보다 49.2% 높게 나타났다.

구조용 FRP부재의 적층구성이 흡수에너지특성에 미치는 영향

  • 최효석;김영남;양인영
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 1999년도 춘계 학술논문발표회 논문집
    • /
    • pp.25-30
    • /
    • 1999
  • 자동차의 정면 충돌시 발생하는 충돌에너지를 흡수하여 인명을 보호하기 위한 장비중 구조 역학적 관점에서 고려될 수 있는 것으로 범퍼와 사이드멤버(Side Member)가 있다. 이들중 범퍼는 시속 8km/hr 이하의 저속 충돌시에 탄성 변형에너지로서 충돌에너지를 흡수하는 역할을 하나, 그 이상의 고속 정면 충돌시에는 일반적으로 사이드멤버가 충돌에너지의 60∼70%를 부재의 연속적인 대변형에 의한 소성에너지에 의해 흡수하고 있다. (중략)

  • PDF

차체구조용 CFRP 사이드부재의 정적 압궤특성에 관한 연구 (A Study on the Static Collapse Characteristics of CFRP Side Member for Vehicle)

  • 이길성;양인영
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.83-86
    • /
    • 2005
  • The front-end side members of automobiles, such as the hat-shaped section member, absorb most of the energy during the front-end collision. The side members absorb more energy in collision if they have higher strength and stiffness, and stable folding capacity (local buckling). Using the above characteristics on energy absorption, vehicle should be designed light-weight to improve fuel combustion ratio and reduce exhaust gas. Because of their specific strength and stiffness, CFRP are currently being considered for many structural (aerospace vehicle, automobiles, trains and ships) applications due to their potential for reducing structural weight. Although CFRP members exhibit collapse modes that are significantly different from the collapse modes of metallic materials, numerous studies have shown that CFRP members can be efficient energy absorbing materials. In this study, the CFRP side members were manufactured using a uni-directional prepreg sheet of carbon/Epoxy and axial static collapse tests were performed for the members. The collapse mode and the energy absorption capability of the members were analyzed under the static load.

  • PDF

차체구조용 박육부재의 단면형상변화에 따른 에너지흡수 특성 (Energy Absorbing Characteristics of Thin-Walled Members for Vehicles Having Various Section Shapes)

  • 차천석;정진오;이길성;백경윤;양인영
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.177-182
    • /
    • 2003
  • The front-end side members of automobiles absorb most of the energy in a case of front-end collision. The front-end side members are required to have a high stiffness together with easiness to collapse sequentially to absorb more impact energy. The axial static collapse test (5mm/min) was conducted by using UTM for form different types of members which have different cross section shapes; single hat, single cap, double cap, and double hat. The single hat shaped section member has the typical standard section, which the double hat shape section has a symmetry in the center to have more stiffness. As a result of the test, the energy absorbing characteristic was analyzed for different section shapes. It turned out that the change of section shape influence the absorbing energy, the mean collapse load and the maximum collapse load, and the relation between the change of section shape and the collapse mode.

차체구조용 박육단면부재의 단면형상변화에 따른 축압궤 특성에 관한 연구 (A Study on the Axial Collapse Characteristics of Thin-Walled Members for Vehicles on the Variation of Section Shapes)

  • 이길성;백경윤;차천석;정진오;양인영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1549-1552
    • /
    • 2003
  • The front-end side members of automobiles absorb most of the energy in a front-end collision. The front-end side members are required to have a high stiffness together with easiness to collapse sequentially to absorb more impact energy. The axial static collapse test (5mm/mim) was conducted by using UTM with respect to the single hat shaped section members which are the standard section shape of the spot welded section members, to the single cap shaped section members, to the double cap shaped section members and to the double hat shaped section members whose section shape are changed in order to give more stiffness. As a result of test, the energy absorbing characteristic was analyzed for different section shapes. That is, it was analyzed that the change of section shape influenced the absorbing energy, the mean collapse load and the maximum collapse load, and that the relation between the change of section shape and the collapse mode.

  • PDF

프론트 사이드 멤버의 경사 충돌 성능 (Crash Performance of Front Side Member Impacted with Angle)

  • 강성종
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.52-59
    • /
    • 2014
  • Front impacted SUV vehicle shows that the front parts of side members are collapsed by the bending due to the transverse load exerted at the end of side members. Side member models were impacted with various angles in order to study the crash performance according to the impact angle. Even for the small impact angle of $10^{\circ}$, crash performance seriously deteriorated and the deformations for impact angle $15^{\circ}$ were similar to those from the front body impact analysis. In addition, the angled front impact analysis for the straight member with hat section was carried out and the effects of inner reinforcement shape on crash performance was investigated.

FEM에 의한 차량전면부 사이드부재의 축방향 충격압궤 해석 (Axial Impact Collapse Analysis on Front-End Side Members of Vehicles by FEM)

  • 차전석;정진오;양인영
    • 한국안전학회지
    • /
    • 제18권4호
    • /
    • pp.1-7
    • /
    • 2003
  • The front-end side members of vehicles(spot welded hat and double hat shaped section members) absorb most of the impact energy in a case of front-end collision. In this paper, specimens with various spot weld pitches have been tested with a high impact velocity of 7.19m/sec(impact energy of 1034J). The axial impact collapse simulation on the sections has been carried out to review the collapse characteristics of these sections, using an explicit finite element code, LS-DYNA3D. Comparing the results with experiments, the simulation has been verified; the energy absorbing capacity is analyzed and an analysis method is suggested to obtain exact collapse loads and deformation collapse modes.

모자형 단면 점용접부재의 축방향 압궤특성에 관한 연구(I) (A Study on the Collapse Characteristics of Hat-Shaped Members with Spot Welding under Axial Compression(I))

  • 차천석;김정호;양인영
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.192-199
    • /
    • 2000
  • The spot-welded automotive side member which has a hat-shaped section and a double hat shaped section has been tested on the axial static(10mm/min) and quasi-static(50mm/min) compressing load. The collapse characteristics of automotive sections have been reviews on shift on shape and in width of the spot-voiding on the flange. On the basis of the results of tests and reviews, the optimum energy absorption capacity of the structure has been studied.

  • PDF