• Title/Summary/Keyword: 사용후 공기

Search Result 658, Processing Time 0.031 seconds

Evaluation of Discharge Capacity for Gravel mat due to Geosynthetic Using Calibration Chamber Test (모형실험을 통한 토목섬유 적용에 따른 쇄석배수층 통수능 평가)

  • Kim, Jae-Hong;Im, Eun-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.11-20
    • /
    • 2014
  • To create a large-scale complex, it is often the case to perform ground improvement by using vertical drain method after the reclamation of coastal soft ground, for construction period shortening and stable site renovation. During this process, the pore water migrates to the horizontal drainage layer of the ground surface through the vertical drain installed in the soft ground and discharged out to the open. In the past sand was used as the material for the horizontal drainage layer in numerous cases, however recently, due to material shortage and high pricing, the use of crushed stones has increased. To prevent mixing of the materials between the horizontal drainage layer and the upper landfill, geosynthetics (PPMat) are installed. However, the use of geosynthetics results in high additional cost for material purchase and installation, therefore it is necessary to examine the validity of the installation itself. In this study, to verify the necessity, model tests were performed. Results from the model tests indicate that the drainage ability of the horizontal drainage layer is barely affected by the application of geosynthetics.

Analysis of Characteristics and User's Evaluation for Lightweight Panel in Apartment (공동주택 경량칸막이 벽체구성재 분류별 사용자 평가 및 특성 분석)

  • Park, Hyeon-Ku
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.181-191
    • /
    • 2010
  • Lightweight panels are currently used in many ways, such as inner walls of the skyscrapers and residential buildings in Korea. Moreover there has been an increasing of interest in developing construction method and quality improvement as many buildings became higher, because there are more advantages like constructability, finishability, and economic efficiency, etc. than previous heavy weight concrete wall. It is necessary to analyze the characteristics and evaluate the performance of lightweight panels when selecting proper methods and materials to building characteristics and builder's demand. However, there doesn't exist systematic data with a classification of lightweight panels' type and performance. The purpose of this study is to classify domestic lightweight panels by both type of exterior board and construction method, and also to evaluate each performance by surveying user's opinion.

Analysis of Weight Reduction Effect of Void Slab on Long and Short Term Deflections of Flat Plates (플랫 플레이트의 장단기 처짐에 대한 중공 슬래브의 자중저감 효과 분석)

  • Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.343-350
    • /
    • 2017
  • The RC flat plate system has benefits such as a short construction time, an improvement of workability and a floor height reduction. In the case of long span slab, cracking damages and large deflections tend to occur due to the low flexural stiffness of flat plates. Specially, over-loading by self-weight of slab during construction increases short and long-term deflections. These problems may be solved by the use of void slab that has benefits of the reduced self-weight. In this study, to analyze an effect of self-weight reduction of void slab on slab deflections, the parametric study is performed. Including variable conditions such as a concrete strength, a slab construction cycle, the number of shored floors, a compressive reinforcement ratio and a tensile reinforcement ratio, slab construction loads and deflections are calculated by considering the construction stages, concrete cracking, and long-term effects. The short-term deflections during construction and the long-term deflections after construction of both of normal and void slabs are compared and the effects of void slab on the reduction of slab deflections are analyzed.

Modificaion and Performance Test for improving ability of Supersonic/Hypersonic Wind Tunnel(MAF) (초음속/극초음속 풍동(MAF)의 성능 향상을 위한 개조 및 검증)

  • Choi, Won-Hyeok;Seo, Dong-Su;Lee, Jae-Woo;Byun, Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.717-722
    • /
    • 2010
  • Supersonic/Hypersonic wind tunnel is a facility which is intended to test and to observe the physical phenomena around a model by creating supersonic flow in the test section. In designing an airplane, the wind tunnel test is demanded to analyzing aerodynamic characteristics of the model without making a prototype. In this research, the model aerodynamic facility(MAF) is modified for the purpose of increasing running time and its functionality. New pneumatic valves for remote control was installed for safety requirement, and new air tanks was installed on MAF as well. A pipe system is also modified to use those new valves and tanks, and the ceiling and side glasses of the test section are switched to ones with the larger surface area. After the MAF modification, a test is performed at Mach 2, 3 and 4. In this test, shadow graph technique, one of the flow visualization methods, is used to visualize supersonic flow field. The pressure in the settling chamber and working section at Mach 2, 3 and 4 was measured in each case. As a result, the possible model size and running time are obtained.

  • PDF

Air-tightness Evaluation of Tube Structures for Super-speed Tube Railway Systems: I. Analytical Modeling and Material Test (초고속 튜브철도 시스템을 위한 튜브 구조물의 기밀성 평가 : I. 해석모델 수립 및 재료 기밀성)

  • Park, Joo-Nam;Nam, Seong-Won;Kim, Lee-Hyeon;Yeo, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.143-150
    • /
    • 2011
  • This paper presents a preliminary study for air-tightness evaluation of vacuum tube structures for super-speed tube railway systems. The formula for flow rate of the air caused by the pressure difference of the inside and outside of the tube structure is derived based on Darcy's law. A test is then performed to measure the air-permeability of concrete with various compressive strengths, the result of which is used for analytical simulation of the air intrusion for a tube structure with a preliminarily defined section. It has been shown that concrete with the compressive strength of at least more than 50MPa is recommended for effective operation and maintenance of the vacuum pump systems, as the air-permeability of concrete is inversely proportional to the exponent of its compressive strength.

A Study on the Model of Artificial Neural Network for Construction Cost Estimation of Educational Facilities at Conceptual Stage (교육시설의 개념단계 공사비예측을 위한 인공신경망모델 개발에 관한 연구)

  • Son, Jae-Ho;Kim, Chung-Yung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.4 s.32
    • /
    • pp.91-99
    • /
    • 2006
  • The purpose of this study is propose an Artificial Neural Network(ANN) model for the construction estimate of the public educational facility at conceptual stage. The current method for the preliminary cost estimate of the public educational facility uses a single-parameter which is based on basic criteria such as a gross floor area. However, its accuracy is low due to the nature of the method. When the difference between the conceptual estimate and detailed estimate is huge, the project has to be modified to meet the established budget. Thus, the ANN model is developed by using multi-parameters in order to estimate the project budget cost more accurately. The result of the research shows 6.82% of the testing error rates when the developed model was tested. The error rates and the error range of the developed model are smaller than those of the general preliminary estimating model at conceptual stage. Since the proposed ANN model was trained using the detailed estimate information of the past 5 years' school construction data, it is expected to forecast the school project cost accurately.

The Study of Antibiotic Resistance in Bacterial Biofilms (박테리아 생체막에 대한 항생제 내성 연구)

  • Kim Jin Wook;Joo Chi Un;Park Jin Yong;Lee Song Ae;Kim In Hae;Lee Jae Hwa
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.4
    • /
    • pp.157-160
    • /
    • 2005
  • Antibiotic resistance of bacteria in the biofilm mode of growth contributes to the chronicity of infection and disease. The penetration of antibiotic, through biofilm developed in an itt vitro model system was investigated. Antibiotic resistant bacteria (E. coli) were obtained from Culture Collection of Antibiotic Resistant Microbes. Ca-alginate bead used as simulated biofilm and a cell entrapment test using compressed air were experiment for the improvement cell viability. Antibiotic susceptibilities though biofilms was measured by assaying the concentration of antibiotic that diffused through the biofilm to minimal inhibition concentration (MIC). Survival of immobilized cells were reduced as compared to free cells. In case of antibiotic susceptible E. coli reduced continuously, but antibiotic resistant E. coli kept up survival rate constantly. Survival was showed after exposed to the antibiotics that the more treated antibiotic resistant E. coli and low concentration of antibiotics) the more survived.

  • PDF

An Analysis of Horizontal Behaviour of H-Pile under Mechanically Stabilized Earth Wall Abutment (보강토 교대 하부 H-Pile 수평 거동특성 연구)

  • Kim, Nagyoung;Jeon, Kyungsoo;Lee, Yongjun;Jun, Jintaek;Shim, Jaewon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.47-59
    • /
    • 2008
  • Application of mechanically stabilized earth wall (MSEW) abutment has been rapidly increasing in United States of America, Pennsylvania since 2002. MSEW is effective for reducing construction cost and period compared to general concrete reinforced wall. In the paper, theoretical background and conventional criterion of MSEW abutment that is widely used abroad are analyzed. Based on the results, application of suitable MSEW abutment to domestic bridge type is examined. For the application of MSEW abutment in Korea, load interacting with upper shoe in domestic bridge types and structural analyses of beam seat and pile are investigated. As a result, all applications are possible except for PSC BOX Bridge that has heavy self-weight of girder. Through two and three dimensional numerical analyses, horizontal behaviour mechanisms between pile and MSEW were analyzed and field tests are also carried out for seven piles behind earth walls. From results of field tests, it is confirmed that an angle of internal friction of backfill material needs to be greater than 34 degree to use H-Pile as foundation of MSEW.

  • PDF

The Fabrication of ITO Thin-film O3 Gas Sensors Using R.F. Magnetron Sputtering Method and their Characterization (R.F. Magnetron Sputtering법을 이용한 ITO 박막 오존 가스센서의 제조 및 특성)

  • Kwon, Jung-Bum;Jung, Kyoung-Keun;Lee, Dong-Su;Ha, Jo-Woong;Yoo, Kwang-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.840-845
    • /
    • 2002
  • As an ozone gas sensor, the semiconductor gas sensor which is cheap, portable and simple in use and has a high sensitivity and an excellent selectivity, has been known as an alternative. In the present study, ITO ($In_2O_3 95%,\;SnO_2$ 5%) thin films were deposited on the alumina substrate by using R.F. magnetron sputtering method. The substrate temperature was 300$^{\circ}C$ and 500$^{\circ}C$, respectively and then some specimens were annealed at 500$^{\circ}C$ for 4h in air. ITO gas-sensing films formed crystallines before and after annealing. As results of gas sensitivity measurements to an ozone gas, the sensor deposited at 300$^{\circ}C$ and then annealed has the highest sensitivity (sensible below 1 ppm). As the operating temperature increased gradually, the sensitivity decreased but the response time and stability improved.

Breakdown Characteristics of Mixtures of $SF_6$ and Dry air under Uniform and Nonuniform Electric Field ($SF_6$와 Dry air가 혼합된 가스의 평등/불평등 전계에 의한 절연파괴특성 연구)

  • Lee, Sang-Hwa;Jung, Hyun-Jae;Jeong, Seung-Young;Ryu, Cheol-Hwi;Bang, Hang-Kwon;Koo, Ja-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1502-1504
    • /
    • 2006
  • 본 연구는 $SF_6$와 Dry-air(건조공기)가 혼합된 절연매체의 절연 특성과 부분방전 특성 연구를 위하여 기초실험용 쳄버와 70kV급 GIS mock up 을 이용하여 교류전압을 인가하여 실험이 수행되었다. 전자의 경우, Sphere gap 및 Needle/Plate 전극시스템을 이용하여 순수 $SF_6$가스와 Dry-air의 절연내력을 비교하고, 챔버의 압력을 5기압으로 유지한 상태에서 Dry-air와 $SF_6$가스의 혼합비를 변화시키면서 절연내력이 측정되었다. 후자의 경우, 기초실험에서 도출된 $SF_6$가스와 Dry-air의 최적의 혼합비율을 선택한 후, 방전 개시전압과 부분방전 양상을 순수 $SF_6$가스의 결과와 비교 분석하기 위한 실험을 수행하였다. 이를 위하여 GIS 사고의 주요원인이 되는 결함들, 즉 Protrusion, Floating, Free moving particle 들을 인위적으로 모의하여 Mock up 내부에 설치하고 내부 압력을 5기압으로 유지한 상태에서 수행되었다. 전자의 경우, $0.5{\sim}5$ 기압 범위내 에서 Dry-air 압력을 변화시켰을 때 절연내력은 전극시스템에 무관하게 순수 $SF_6$가스의 결과치의 $40{\sim}50%$정도이다. 또한 챔버 압력이 5기압일 경우, Needle/Plate 전극을 이용했을 경우, Dry-air 가 80% 혼합된 절연매체는 순수 $SF_6$가스 절연내력의 80%정도이다. 후자의 경우, 인가전압을 고정 시켰을 때, 부분방전 패턴과 방전크기는, 순수 $SF_6$가스와 Dry-air 가 80% 혼합된 절연매체는 동일한 패턴과 방전크기를 나타내고 있다. 이러한 결과를 근거로, 가스 압력이 5기압에서 운전되는 전력기기의 절연 매체로서 혼합가스를 사용할 경우, $SF_6$가스와 Dry-air의 혼합비는 2:8정도가 적절한 것으로 제안한다.

  • PDF