• 제목/요약/키워드: 사용자 키워드학습

검색결과 84건 처리시간 0.022초

NLP를 이용한 카페 추천 알고리즘 (Cafe recommendation algorithm using NLP)

  • 목다현;변규린;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.404-406
    • /
    • 2023
  • 본 논문은 맞춤형 카페 추천 서비스를 제안한다. 대중적인 포털 사이트의 카페 정보와 사용자 리뷰를 크롤링 하여 지역별, 키워드별 카페 데이터를 수집한다. 사용자가 원하는 지역과 임의의 키워드를 기준으로 데이터셋 내의 키워드와 비교하여 가장 유사한 키워드를 추출한다. spaCy 라이브러리의사전 학습된 모델 중 similarity method를 사용하여 추출된 키워드를 바탕으로 해당하는 카페를 추천한다. 이를 통해 사용자는 불필요한 정보를 걸러내고 쉽게 원하는 정보를 얻을 수 있다.

비디오 데이터를 위한 색상 히스토그램 기술 (Color Histogram Mechanism for Video Data)

  • 이종희
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2010년도 춘계학술발표논문집 1부
    • /
    • pp.299-301
    • /
    • 2010
  • 본 논문에서는 사용자의 키워드 학습과 비교 영역 학습을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화된 비디오 검색 시스템을 제안한다. 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 색상 히스토그램 비교기법과 제안하는 비교 영역 학습 기법을 통해 가장 유사한 키 프레임을 검색한다.

  • PDF

사용자 의도 트리를 사용한 동적 카테고리 재구성 (Dynamic recomposition of document category using user intention tree)

  • 김효래;장영철;이창훈
    • 정보처리학회논문지B
    • /
    • 제8B권6호
    • /
    • pp.657-668
    • /
    • 2001
  • 기존에 단어의 빈도수를 근간으로 하는 문서 분류 시스템에서는 단일 키워드를 사용하기 때문에 사용자의 의도를 충분히 반영한 문서 분류가 어려웠다. 이러한 단점을 개선하기 위하여 우선 기존의 설명에 근거한 학습방법(explanation based learning)에서 한 예제만 있어도 지식베이스 정보와 함께 개념을 학습할 수 있다는 점에 착안하여 먼저 사용자 질의를 분석, 확장한 후 사용자 의도 트리를 생성한다. 이 의도 트리의 정보를 기존의 키워드 빈도 수에 근거한 문서분류 과정에 제약 및 보충 정보로 사용하여 사용자의 의도에 더욱더 근접한 웹 문서를 분류할 수 있다. 문서를 분류하는 측면에서 볼 때 구조화된 사용자 의도 정보는 단순한 키워드의 한계를 극복하여 문서 분류 과정에서 특정 키워드 빈도수의 임계값을 결정함으로서 잃게되는 문서 및 정보를 좀더 보유하고 재적용할 수 있게 된다. 질의에서 분석, 추출된 사용자 의도 트리는 기존의 통계 및 확률을 사용한 문서 분류기법들과 조합하여 사용자 의도정보를 제공함으로서 카테고리의 형성 방향과 범위를 결정하는데 높은 효율성을 보인다.

  • PDF

교육용 가상환경을 위한 이미지 선택 알고리즘 개발에 관한 연구 (A Study on the Development of Image Selection Algorithm for Educational Virtual Environment)

  • 권수영;김민영;조용주;박경신
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.1013-1016
    • /
    • 2009
  • 본 논문에서는 교육용 가상환경에서 학습자들에게 좀 더 효과적인 학습 효과를 주기 위해 학습 중에 보고 촬영했던 사진들을 자동으로 정리해서 사용자가 교육용 가상환경에서 체험했던 학습내용을 사진을 통해서 복습할 수 있도록 해주는 알고리즘을 소개한다. 기존의 날짜, 장소, 키워드 등의 정보를 이용하여 사진을 정리하는 알고리즘과는 달리, 본 논문에서는 사용자가 학습을 하면서 기억해야 할 중요한 내용이나 사용자의 관심도에 의해 사진 정리를 함으로써 사용자의 학습 효과를 높이는 것을 목적으로 하는 사진 정리 알고리즘을 소개한다. 이에 따라 알고리즘에서 학습적으로 중요한 사진을 뽑는 기준과 사용자의 관심도, 인지율 계산에 대해 설명하고 이 알고리즘을 기반으로 구현한 시스템을 설명한다. 또한 사용자 실험 분석을 하고 향후 연구방향에 대해 논한다.

키 프레임의 주석과 비교 영역 학습을 이용한 비디오 검색 시스템 (A Video Retrieval System Using Annotation and Comparison Area Learning of Key-frames)

  • 이기성
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2006년도 추계학술발표논문집
    • /
    • pp.239-241
    • /
    • 2006
  • 비디오 데이터를 효율적으로 처리하기 위해서는 비디오 데이터가 가지고 있는 내용에 대한 정보를 데이터베이스에 저장하고 사용자들의 다양한 질의를 처리할 수 있는 의미기반 검색 기법이 요구된다. 본 논문에서는 사용자의 키워드 학습과 비교 영역 학습을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화된 비디오 검색 시스템을 제안한다.

  • PDF

개인 웹 에이전트를 위한 사용자 프로파일 구축 (Construction of User Profile for Personal Web Agent)

  • 이상섭;소영준;박영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.126-128
    • /
    • 1998
  • 본 논문에서 구현하고자 하는 웹기반 사용자별 에이전트는 웹을 이용해 정보를 검색하는 사용자들에 대한 사용자 관심도를 사용자의 웹검색 행위를 감시하는 모니터 에이전트에 사용자가 직접 기술하게 하고 이를 별도의 학습서버를 두어 사용자별 프로파일을 만들어 이를 사용자가 확인 및 편집할 수 있게 하였다. 서버에서의 학습 과정은 웹 브라우저를 통하여 수집된 정보를 바탕으로 사용자가 관심을 가지는 웹 문서의 일반적인 내용에 대한 관심 정확도를 높이는 일련의 단어 정제 과정을 통하여 최적의 관심 키워드를 추출하는 작업으로 이루어지며 이는 표현 모델인 사용자 프로파일을 구축하여, 관심 문서를 검색하는데 적절한 정보를 제시하는 것을 목적으로 한다. 이 시스템에서 적용되는 학습 방식은 사용자의 웹 문서 관심도에 의존하므로 웹 문서에 나타나는 텍스트들을 대상으로 C4.5 학습 시스템을 적용한다.

  • PDF

개인화된 사용자 학습을 위한 연관 객체 추출 설계 및 구현 (Assocate Object Extraction Using personalized user Learning)

  • 유수경;김교정
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2004년도 춘계학술발표대회논문집
    • /
    • pp.636-639
    • /
    • 2004
  • 본 논문은 웹 도큐먼트를 기반으로 사용자에게 의미 있는 정보를 찾아주기 위한 연관 객체 추출 기법인 PMPL(Personalized Multi-Strategey Pattern Loaming) 시스템을 제안하고자 한다. PMPL 모듈은 인터넷의 정보를 여과하여 필터링하고, 사용자 개인화의 키워드를 중심으로 연관된 객체를 추출한다. 이때 연관된 객체 추출 시 대용량 데이터에서 시간적, 공간적면에서 효율적인 연관 탐색 기법인 Fp-Tree와 Fp-Growth 알고리즘을 적용시켰으며, 연관규칙 탐색을 보완하기 위해 가중치 기법인 만유인력 기법을 적용시켰다. PMPL 시스템을 실행한 결과 개인화된 사용자 중심어 기초로 기존의 단일 학습 기법에 비해 더 많은 의미 있는 연관 지식을 추출한 결과가 보였다.

  • PDF

퍼지추론과 코호넨 신경망을 사용한 유즈넷 뉴스 필터링 (Usenet News Filtering using Fuzzy Inference and Kohonen Network)

  • 김종완;조규철;김병익
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2003년도 춘계학술대회
    • /
    • pp.47-51
    • /
    • 2003
  • 인터넷을 통해 제공되는 맡은 양의 뉴스 정보 중에서 찾고자 하는 정확한 정보를 빠른 시간 안에 검색하고, 원하는 정보만 필터링 하는 것이 필요하다. 먼저, 인터넷에 접속된 뉴스서버들의 뉴스 문서를 각 그룹별로 수집한다. 수집된 뉴스 문서를 대상으로 퍼지추론을 통하여 문서를 대표하는 키워드를 추출하여 데이터베이스에 저장한다. 각 뉴스그룹의 문서에서 단어들을 분석하여 입력된 단어들의 개수를 이용하여 정규화 시켜서 대표적인 비지도학습 신경망인 코호넨 신경망을 사용하여 학습시킨다. 코호넨 신경망으로 추출된 단어들의 연관성을 활용하여 뉴스그룹을 클러스터링한다. 최종적으로 사용자가 관심 있는 키워드를 입력하면, 학습된 신경망이 유사한 뉴스그룹들을 사용자에게 제시해준다.

  • PDF

사용자 의도 정보를 사용한 웹문서 분류

  • 장영철
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2008년도 추계 공동 국제학술대회
    • /
    • pp.292-297
    • /
    • 2008
  • 복잡한 시맨틱을 포함한 웹 문서를 정확히 범주화하고 이 과정을 자동화하기 위해서는 인간의 지식체계를 수용할 수 있는 표준화, 지능화, 자동화된 문서표현 및 분류기술이 필요하다. 이를 위해 키워드 빈도수, 문서내 키워드들의 관련성, 시소러스의 활용, 확률기법 적용 등에 사용자의도(intention) 정보를 활용한 범주화와 조정 프로세스를 도입하였다. 웹 문서 분류과정에서 시소러스 등을 사용하는 지식베이스 문서분류와 비 감독 학습을 하는 사전 지식체계(a priori)가 없는 유사성 문서분류 방법에 의도정보를 사용할 수 있도록 기반체계를 설계하였고 다시 이 두 방법의 차이는 Hybrid조정프로세스에서 조정하였다. 본 연구에서 설계된 HDCI(Hybrid Document Classification with Intention) 모델은 위의 웹 문서 분류과정과 이를 제어 및 보조하는 사용자 의도 분석과정으로 구성되어 있다. 의도분석과정에 키워드와 함께 제공된 사용자 의도는 도메인 지식(domain Knowledge)을 이용하여 의도간 계층트리(intention hierarchy tree)를 구성하고 이는 문서 분류시 제약(constraint) 또는 가이드의 역할로 사용자 의도 프로파일(profile) 또는 문서 특성 대표 키워드를 추출하게 된다. HDCI는 문서간 유사성에 근거한 상향식(bottom-up)의 확률적인 접근에서 통제 및 안내의 역할을 수행하고 지식베이스(시소러스) 접근 방식에서 다양성에 한계가 있는 키워들 간 관계설정의 정확도를 높인다.

  • PDF

클러스터와 온톨로지 정보를 이용한 웹 서비스 매칭 알고리즘 (Web Service Matching Algorithm using Cluster and Ontology Information)

  • 이용주
    • 인터넷정보학회논문지
    • /
    • 제11권1호
    • /
    • pp.59-69
    • /
    • 2010
  • 웹 서비스들의 수가 급격하게 증가함에 따라 사용자가 적합한 웹 서비스를 찾는 것은 매우 중요한 문제로 대두되고 있다. 그러나 전통적인 키워드 탐색 방법은 다음의 두 가지 이유 때문에 문제가 있다: (1) 웹 서비스에 대한 의미적인 정보들을 활용하지 못한다. (2) 사용자의 요구사항을 정확하게 표현하지 못한다. 이러한 키워드 기반 탐색 방법의 한계를 극복하기 위해 본 논문에서는 하나의 새로운 구문 분석 및 온톨로지 학습 방법을 제안한다. 구문 분석 방법은 키워드를 일반화하여 검색 범위를 넓혀주고, 온톨로지 학습 방법은 상관관계를 표현하여 깊이 있는 탐색을 유도한다. 이러한 두 방법을 결합함으로써 재현율과 정확률 둘 다 향상 시킬 수 있는 기법이 될 수 있다. 제안된 방법은 508개의 웹 서비스 집합에 대한 실험을 수행하여 그 성능의 우수함을 보인다.