• Title/Summary/Keyword: 사용자 모델링

Search Result 1,239, Processing Time 0.033 seconds

Structural Design and Analysis of a Hydraulic Coiling Arm for Offshore Wind-turbine Submarine Cable (해상풍력 해저케이블 하역용 유압식 코일링 암 구조설계 및 해석)

  • Kim, Myung-Hwan;Kim, Dong-Hyun;Oh, Min-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Structural design and analysis of a coiling arm unloading machine for submarine cable have been originally conducted in this study. Three-dimensional CAD modeling process is practically applied for the structural design in detail. Finite element method(FEM) and multi-body dynamics(MBD) analyses are also used to verify the safety and required motions of the designed coiling arm structure. The effective moving functions of the designed coiling arm with respect to rotational and radial motions are achieved by adopting bearing-roller mechanical parts and hydraulic system. Critical design loading conditions due to its self weight, carrying cables, offshore wind, and hydraulic system over operation conditions are considered for the present structural analyses. In addition, possible inclined ground conditions for the installation of the designed coiling arm are also considered to verify overturn stability. The present hydraulic type coiling arm system is originally designed and developed in this study. The developed coiling arm has been installed at a harbor, successfully tested its operational functions, and finished practical unloading mission of the submarine cable.

Georadar System Using Network-Analyzer (네트웍 분석기를 이용한 레이다탐사 시스템의 구현)

  • Cho Seong-Jun;Kim Jung-Ho;Lee Seoung Kon;Son Jeong-Sul;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.272-279
    • /
    • 2002
  • During field survey of ground penetrating radar or borehole radar, we often encounter some problems which could be solved easily by modifying structure of the system such as antenna length, shape or array. In addition, it is necessary that the user could easily modify configuration of the radar system na test various array of antennas in order to verify and confirm numerical modeling results concerning radar antennas. We have developed network-analyzer-based, stepped-frequency georadar system. This system had been comprised with coaxial cable to confirm possibility of the system, then we have upgraded the system to use optical cable that is composed of optical/electric transducers, electric/optical transducers, amp, pre-amp and antennas. The software for the aquisition of data has been developed to control the system automatically using PC with GPIB communication and to display the obtained data graphically. We have tested the system in field survey na the results have been compared with those of RAMAC/GPR system.

Design of a Low Noise 6-Axis Inertial Sensor IC for Mobile Devices (모바일용 저잡음 6축 관성센서 IC의 설계)

  • Kim, Chang Hyun;Chung, Jong-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.397-407
    • /
    • 2015
  • In this paper, we designed 1 chip IC for 3-axis gyroscope and 3-axis accelerometer used for various IoT/M2M mobile devices such as smartphone, wearable device and etc. We especially focused on analysis of gyroscope noise and proposed new architecture for removing various noise generated by gyroscope MEMS and IC. Gyroscope, accelerometer and geo-magnetic sensors are usually used to detect user motion or to estimate moving distance, direction and relative position. It is very important element to designing a low noise IC because very small amount of noise may be accumulated and affect the estimated position or direction. We made a mathematical model of a gyroscope sensor, analyzed the frequency characteristics of MEMS and circuit, designed a low noise, compact and low power 1 chip 6-axis inertial sensor IC including 3-axis gyroscope and 3-axis accelerometer. As a result, designed IC has 0.01dps/${\sqrt{Hz}}$ of gyroscope sensor noise density.

Minimizing the Risk of an Open Computing Environment Using the MAD Portfolio Optimization (최적포트폴리오 기법을 이용한 개방형 전산 환경의 안정성 확보에 관한 연구)

  • Kim, Hak-Jin;Park, Ji-Hyoun
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.2
    • /
    • pp.15-31
    • /
    • 2009
  • The next generation IT environment is expected to be an open computing environment based on Grid computing technologies, which allow users to access to any type of computing resources through networks. The open computing environment has benefits in aspects of resource utilization, collaboration, flexibility and cost reduction. Due to the variation in performance of open computing resources, however, resource allocation simply based on users' budget and time constraints often fails to meet the Service Level Agreement(SLA). This paper proposes the Mean-Absolute Deviation(MAD) portfolio optimization approach, in which service brokers consider the uncertainty of performance of resources, and compose resource portfolios that minimize the uncertainty. In order to investigate the effect of this approach, we simulate an open computing environment with varying uncertainty levels, users' constraints, and brokers' optimization strategies. The simulation result concludes threefolds. First, the MAD portfolio optimization improves the success ratio of delivering the required performance to users. Second, the success ratio depends on the accuracy in predicting the variability of performance. Thirdly, the measured variability can also help service brokers expand their service to cost-critical users by discounting the access cost of open computing resources.

  • PDF

Shoulder Surfing Attack Modeling and Security Analysis on Commercial Keypad Schemes (어깨너머공격 모델링 및 보안 키패드 취약점 분석)

  • Kim, Sung-Hwan;Park, Min-Su;Kim, Seung-Joo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.6
    • /
    • pp.1159-1174
    • /
    • 2014
  • As the use of smartphones and tablet PCs has exploded in recent years, there are many occasions where such devices are used for treating sensitive data such as financial transactions. Naturally, many types of attacks have evolved that target these devices. An attacker can capture a password by direct observation without using any skills in cracking. This is referred to as shoulder surfing and is one of the most effective methods. There has been only a crude definition of shoulder surfing. For example, the Common Evaluation Methodology(CEM) attack potential of Common Criteria (CC), an international standard, does not quantitatively express the strength of an authentication method against shoulder surfing. In this paper, we introduce a shoulder surfing risk calculation method supplements CC. Risk is calculated first by checking vulnerability conditions one by one and the method of the CC attack potential is applied for quantitative expression. We present a case study for security-enhanced QWERTY keyboard and numeric keypad input methods, and the commercially used mobile banking applications are analyzed for shoulder surfing risks.

Scenario-Driven Verification Method for Completeness and Consistency Checking of UML Object-Oriented Analysis Model (UML 객체지향 분석모델의 완전성 및 일관성 진단을 위한 시나리오기반 검증기법)

  • Jo, Jin-Hyeong;Bae, Du-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.3
    • /
    • pp.211-223
    • /
    • 2001
  • 본 논문에서 제안하는 시나리오기반 검증기법의 목적은 UML로 작성된 객체지향 분석모델의 완전성 및 일관성을 진단하는 것이다. 검증기법의 전체 절차는 요구분석을 위한 Use Case 모델링 과정에서 생성되는 Use Case 시나리오와 UML 분석모델로부터 역공학적 방법으로 도출된 객체행위 시나리오와의 상호참조과정 및 시나리오 정보트리 추적과정을 이용하여 단계적으로 수행된다. 본 검증절차를 위하여 우선, UML로 작성된 객체지향 분석모델들은 우선 정형명세언어를 사용하여 Use Case 정형명세로 변환하다. 그 다음에, Use Case 정형명세로부터 해당 Use Case 내의 객체의 정적구조를 표현하는 시나리오 정보트리를 구축하고, Use Case 정형명세 내에 포함되어 있는 객체 동적행위 정보인 메시지 순차에 따라 개별 시나리오흐름을 시나리오 정보트리에 표현한다. 마지막으로 시나리오 정보트리 추적과 시나리오 정보 테이블 참조과정을 중심으로 완전성 및 일관성 검증작업을 수행한다. 즉, 검증하고자 하는 해당 Use Case의 시나리오 정보트리를 이용한 시나리오 추적과정을 통해 생성되는 객체행위 시나리오와 요구분석 과정에서 도출되는 Use Case 시나리오와의 일치여부를 조사하여 분석모델과 사용자 요구사양과의 완전성을 검사한다. 그리고, 시나리오 추적과정을 통해 수집되는 시나리오 관련종보들을 가지고 시나리오 정보 테이블을 작성한 후, 분석과정에서 작성된 클래스 관련정보들의 시나리오 포함 여부를 확인하여 분석모델의 일관성을 검사한다. 한편, 본 논문에서 제안하는 검증기법의 효용성을 증명하기 위해 대학의 수강등록시스템 개발을 위해 UML을 이용해 작성된 분석모델을 특정한 사례로써 적용하여 보았다. 프로세싱 오버헤드 및 메모리와 대역폭 요구량 측면에서 MARS 모델보다 유리함을 알 수 있었다.과는 본 논문에서 제안된 프리페칭 기법이 효율적으로 peak bandwidth를 줄일 수 있다는 것을 나타낸다.ore complicate such a prediction. Although these overestimation sources have been attacked in many existing analysis techniques, we cannot find in the literature any description about questions like which one is most important. Thus, in this paper, we quantitatively analyze the impacts of overestimation sources on the accuracy of the worst case timing analysis. Using the results, we can identify dominant overestimation sources that should be analyzed more accurately to get tighter WCET estimations. To make our method independent of any existing analysis techniques, we use simulation based methodology. We have implemented a MIPS R3000 simulator equipped with several switches, each of which determines the accuracy level of the

  • PDF

Development of Simulator for Rockfall and Landslide using Physical Engine (물리엔진을 사용한 낙석 및 산사태 시뮬레이터 개발)

  • Kim, Sung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.60-67
    • /
    • 2009
  • This paper describes a development of system that enables the user to simulate the rockfall and landslide from slopes using physical engine. Until now, it will not be able to accomplish the virtual experiment of three-dimensional interpretation about slope informations, stability evaluation, the rockfall and landslide simulation, etc., because of absence of three-dimensional simulation systems which relates with slopes. With like that reason, this paper developed a simulator which is identical or similar the rockfall and the landslide where the possibility which will occur or occurred from actuality is high very actual condition from virtual experiment. For a simulator development, this paper uses the physical engine which is mainly used from computer game and animation development etc., And it will be show the process where the rockfall and landslide occurs with simulator. This simulator which sees the process where the rockfall and the landslide occur from three-dimension computer graphics theory and the physical engine, is a system which is the possibility of showing actual feeling. Therefore, the result of this paper is applied in vehicle travelling guidance system and intelligence traffic systematic etc., because of creates visual service and three-dimensional application of the slope information database which is developed in existing, and will be able to forecast the upgrade of user benefit planning and a service.

A Bio-Edutainment System to Virus-Vaccine Discovery based on Collaborative Molecular in Real-Time with VR

  • Park, Sung-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.109-117
    • /
    • 2020
  • An edutainment system aims to help learners to recognize problems effectively, grasp and classify important information needed to solve the problems and convey the contents of what they have learned. Edutainment contents can be usefully applied to education and training in the both scientific and industrial areas. Our present work proposes an edutainment system that can be applied to a drug discovery process including virtual screening by using intuitive multi-modal interfaces. In this system, a stereoscopic monitor is used to make three-dimensional (3D) macro-molecular images, with supporting multi-modal interfaces to manipulate 3D models of molecular structures effectively. In this paper, our system can easily solve a docking simulation function, which is one of important virtual drug screening methods, by applying gaming factors. The level-up concept is implemented to realize a bio-game approach, in which the gaming factor depends on number of objects and users. The quality of the proposed system is evaluated with performance comparison in terms of a finishing time of a drug docking process to screen new inhibitors against target proteins of human immunodeficiency virus (HIV) in an e-drug discovery process.

A Study on Smart Ground Resistance Measurement Technology Based on Aduino (아두이노 기반 IT융합 스마트 대지저항 측정 기술 연구)

  • Kim, Hong Yong
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.684-693
    • /
    • 2021
  • Purpose: The purpose is to establish a safe facility environment from abnormal voltages such as lightning by developing a smart land resistance measuring device that can acquire real-time land resistance data using Arduino. Method: This paper studied design models and application cases by developing a land resistance acquisition and analysis system with Arduino and a power line communication (PLC) system. Some sites in the wind power generation complex in Gyeongsangnam-do were selected as test beds, and real-time land resistance data applied with new technologies were obtained. The electrode arrangement adopted a smart electrode arrangement using a combination of a Wenner four electrode arrangement and a Schlumberger electrode arrangement. Result: First, the characteristic of this technology is that the depth of smart multi-electrodes is organized differently to reduce the error range of the acquired data even in the stratigraphic structure with specificity between floors. Second, IT convergence technology was applied to enable real-time transmission and reception of information on land resistance data acquired from smart ground electrodes through the Internet of Things. Finally, it is possible to establish a regular management system and analyze big data accumulated in the server to check the trend of changes in various elements, and to model the optimal ground algorithm and ground system design for the IT convergence environment. Conclusion: This technology will reduce surge damage caused by lightning on urban infrastructure underlying the 4th industrial era and design an optimized ground system model to protect the safety and life of users. It is also expected to secure intellectual property rights of pure domestic technology to create jobs and revitalize our industry, which has been stagnant as a pandemic in the post-COVID-19 era.

Study on Compensation Method of Anisotropic H-field Antenna (Loran H-field 안테나의 지향성 보상 기법 연구)

  • Park, Sul-Gee;Son, Pyo-Woong
    • Journal of Navigation and Port Research
    • /
    • v.43 no.3
    • /
    • pp.172-178
    • /
    • 2019
  • Although the needs for providing resilient PNT information are increasing, threats due to the intentional RFI or space weather change are challenging to resolve. eLoran, which is a terrestrial navigation system that use a high-power signal is considered as a best back-up navigation system. Depending on the user's environment in the eLoran system, the user may use one of E-field or H-field antennas. H-field antenna, which has no restriction on setting stable ground and is relatively resistant to noise of general electronic equipment, is composed of two loops, and shows anisotropic gain pattern due to the different measurement at the two loops. Therefore, the H-field antenna's phase estimation value of signal varies depending on its direction even at the static environment. The error due to the direction of the signal should be eliminated if the user want to estimate the own position more precisely. In this paper, a method to compensate the error according to the geometric distribution between the H-field antenna and the transmitting station is proposed. A model was developed to compensate the directional error of H-field antenna based on the signal generated from the eLoran signal simulator. The model is then used to the survey measurement performed in the land area and verify its performance.