• Title/Summary/Keyword: 사업수행자

Search Result 702, Processing Time 0.02 seconds

A Study on Startups' Dependence on Business Incubation Centers (창업보육서비스에 따른 입주기업의 창업보육센터 의존도에 관한 연구)

  • Park, JaeSung;Lee, Chul;Kim, JaeJon
    • Korean small business review
    • /
    • v.31 no.2
    • /
    • pp.103-120
    • /
    • 2009
  • As business incubation centers (BICs) have been operating for more than 10 years in Korea, many early stage startups tend to use the services provided by the incubating centers. BICs in Korea have accumulated the knowledge and experience in the past ten years and their services have been considerably improved. The business incubating service has three facets : (1) business infrastructure service, (2) direct service, and (3) indirect service. The mission of BICs is to provide the early stage entrepreneurs with the incubating service in a limited period time to help them grow strong enough to survive the fierce competition after graduating from the incubation. However, the incubating services sometimes fail to foster the independence of new startup companies, and raise the dependence of many companies on BICs. Thus, the dependence on BICs is a very important factor to understand the survival of the incubated startup companies after graduation from BICs. The purpose of this study is to identify the main factors that influence the firm's dependence on BICs and to characterize the relationships among the identified factors. The business incubating service is a core construct of this study. It includes various activities and resources, such as offering the physical facilities, legal service, and connecting them with outside organizations. These services are extensive and take various forms. They are provided by BICs directly or indirectly. Past studies have identified various incubating services and classify them in different ways. Based on the past studies, we classify the business incubating service into three categories as mentioned above : (1) business infrastructure support, (2) direct support, and (3) networking support. The business infrastructure support is to provide the essential resources to start the business, such as physical facilities. The direct support is to offer the business resources available in the BICs, such as human, technical, and administrational resources. Finally, the indirect service was to support the resource in the outside of business incubation center. Dependence is generally defined as the degree to which a client firm needs the resources provided by the service provider in order to achieve its goals. Dependence is generated when a firm recognizes the benefits of interacting with its counterpart. Hence, the more positive outcomes a firm derives from its relationship with the partner, the more dependent on the partner the firm must inevitably become. In business incubating, as a resident firm is incubated in longer period, we can predict that her dependence on BICs would be stronger. In order to foster the independence of the incubated firms, BICs have to be able to manipulate the provision of their services to control the firms' dependence on BICs. Based on the above discussion, the research model for relationships between dependence and its affecting factors was developed. We surveyed the companies residing in BICs to test our research model. The instrument of our study was modified, in part, on the basis of previous relevant studies. For the purposes of testing reliability and validity, preliminary testing was conducted with firms that were residing in BICs and incubated by the BICs in the region of Gwangju and Jeonnam. The questionnaire was modified in accordance with the pre-test feedback. We mailed to all of the firms that had been incubated by the BICs with the help of business incubating managers of each BIC. The survey was conducted over a three week period. Gifts (of approximately ₩10,000 value) were offered to all actively participating respondents. The incubating period was reported by the business incubating managers, and it was transformed using natural logarithms. A total of 180 firms participated in the survey. However, we excluded 4 cases due to a lack of consistency using reversed items in the answers of the companies, and 176 cases were used for the analysis. We acknowledge that 176 samples may not be sufficient to conduct regression analyses with 5 research variables in our study. Each variable was measured through multiple items. We conducted an exploratory factor analysis to assess their unidimensionality. In an effort to test the construct validity of the instruments, a principal component factor analysis was conducted with Varimax rotation. The items correspond well to each singular factor, demonstrating a high degree of convergent validity. As the factor loadings for a variable (or factor) are higher than the factor loadings for the other variables, the instrument's discriminant validity is shown to be clear. Each factor was extracted as expected, which explained 70.97, 66.321, and 52.97 percent, respectively, of the total variance each with eigen values greater than 1.000. The internal consistency reliability of the variables was evaluated by computing Cronbach's alphas. The Cronbach's alpha values of the variables, which ranged from 0.717 to 0.950, were all securely over 0.700, which is satisfactory. The reliability and validity of the research variables are all, therefore, considered acceptable. The effects of dependence were assessed using a regression analysis. The Pearson correlations were calculated for the variables, measured by interval or ratio scales. Potential multicollinearity among the antecedents was evaluated prior to the multiple regression analysis, as some of the variables were significantly correlated with others (e.g., direct service and indirect service). Although several variables show the evidence of significant correlations, their tolerance values range between 0.334 and 0.613, thereby demonstrating that multicollinearity is not a likely threat to the parameter estimates. Checking some basic assumptions for the regression analyses, we decided to conduct multiple regression analyses and moderated regression analyses to test the given hypotheses. The results of the regression analyses indicate that the regression model is significant at p < 0.001 (F = 44.260), and that the predictors of the research model explain 42.6 percent of the total variance. Hypotheses 1, 2, and 3 address the relationships between the dependence of the incubated firms and the business incubating services. Business infrastructure service, direct service, and indirect service are all significantly related with dependence (β = 0.300, p < 0.001; β = 0.230, p < 0.001; β = 0.226, p < 0.001), thus supporting Hypotheses 1, 2, and 3. When the incubating period is the moderator and dependence is the dependent variable, the addition of the interaction terms with the antecedents to the regression equation yielded a significant increase in R2 (F change = 2.789, p < 0.05). In particular, direct service and indirect service exert different effects on dependence. Hence, the results support Hypotheses 5 and 6. This study provides several strategies and specific calls to action for BICs, based on our empirical findings. Business infrastructure service has more effect on the firm's dependence than the other two services. The introduction of an additional high charge rate for a graduated but allowed to stay in the BIC is a basic and legitimate condition for the BIC to control the firm's dependence. We detected the differential effects of direct and indirect services on the firm's dependence. The firms with long incubating period are more sensitive to indirect service positively, and more sensitive to direct service negatively, when assessing their levels of dependence. This implies that BICs must develop a strategy on the basis of a firm's incubating period. Last but not least, it would be valuable to discover other important variables that influence the firm's dependence in the future studies. Moreover, future studies to explain the independence of startup companies in BICs would also be valuable.

Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis (인공지능 기술에 관한 가트너 하이프사이클의 네트워크 집단구조 특성 및 확산패턴에 관한 연구)

  • Shin, Sunah;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.107-129
    • /
    • 2022
  • It is important to preempt new technology because the technology competition is getting much tougher. Stakeholders conduct exploration activities continuously for new technology preoccupancy at the right time. Gartner's Hype Cycle has significant implications for stakeholders. The Hype Cycle is a expectation graph for new technologies which is combining the technology life cycle (S-curve) with the Hype Level. Stakeholders such as R&D investor, CTO(Chef of Technology Officer) and technical personnel are very interested in Gartner's Hype Cycle for new technologies. Because high expectation for new technologies can bring opportunities to maintain investment by securing the legitimacy of R&D investment. However, contrary to the high interest of the industry, the preceding researches faced with limitations aspect of empirical method and source data(news, academic papers, search traffic, patent etc.). In this study, we focused on two research questions. The first research question was 'Is there a difference in the characteristics of the network structure at each stage of the hype cycle?'. To confirm the first research question, the structural characteristics of each stage were confirmed through the component cohesion size. The second research question is 'Is there a pattern of diffusion at each stage of the hype cycle?'. This research question was to be solved through centralization index and network density. The centralization index is a concept of variance, and a higher centralization index means that a small number of nodes are centered in the network. Concentration of a small number of nodes means a star network structure. In the network structure, the star network structure is a centralized structure and shows better diffusion performance than a decentralized network (circle structure). Because the nodes which are the center of information transfer can judge useful information and deliver it to other nodes the fastest. So we confirmed the out-degree centralization index and in-degree centralization index for each stage. For this purpose, we confirmed the structural features of the community and the expectation diffusion patterns using Social Network Serice(SNS) data in 'Gartner Hype Cycle for Artificial Intelligence, 2021'. Twitter data for 30 technologies (excluding four technologies) listed in 'Gartner Hype Cycle for Artificial Intelligence, 2021' were analyzed. Analysis was performed using R program (4.1.1 ver) and Cyram Netminer. From October 31, 2021 to November 9, 2021, 6,766 tweets were searched through the Twitter API, and converting the relationship user's tweet(Source) and user's retweets (Target). As a result, 4,124 edgelists were analyzed. As a reult of the study, we confirmed the structural features and diffusion patterns through analyze the component cohesion size and degree centralization and density. Through this study, we confirmed that the groups of each stage increased number of components as time passed and the density decreased. Also 'Innovation Trigger' which is a group interested in new technologies as a early adopter in the innovation diffusion theory had high out-degree centralization index and the others had higher in-degree centralization index than out-degree. It can be inferred that 'Innovation Trigger' group has the biggest influence, and the diffusion will gradually slow down from the subsequent groups. In this study, network analysis was conducted using social network service data unlike methods of the precedent researches. This is significant in that it provided an idea to expand the method of analysis when analyzing Gartner's hype cycle in the future. In addition, the fact that the innovation diffusion theory was applied to the Gartner's hype cycle's stage in artificial intelligence can be evaluated positively because the Gartner hype cycle has been repeatedly discussed as a theoretical weakness. Also it is expected that this study will provide a new perspective on decision-making on technology investment to stakeholdes.