• Title/Summary/Keyword: 사실화

Search Result 1,584, Processing Time 0.028 seconds

Studies on Increasing the Efficiency of Nitrogen Nutrition (질소영양(窒素營養)의 효율증진(效率增進)에 관(關)한 연구(硏究))

  • Kwack, Pan-Ju
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.151-166
    • /
    • 1969
  • I. Fffects of nitrogen supplying level and culture condition on the top growth aod tubers formation of Ipomoea Batatas. 1) The low level nitrogen (A plot) 3 Milliequivalent per liter of nutrient solution stimulated tuber formation while the high level nitrogen ($B_1\;and\;B_2$ plot) of 10 milliequivalent per liter failed to form tuber though fibrous roots were seen much activated. The suppressive effect of nitrogen on tuber formation in presumed to result from the direct suppressive effect of nitrogen or a certain biocatalystic effect rather than from any indirect effect through the stimulation to growth of tops or the competition with carbohydrates. 2) The addition of milligram urea to nutrient solution stimulated the growth and increased fresh weight and dry weight of the aerial part while suppressed, a little, plant length. 3) The water culture method, which this experiment newly adopted, stimulated plant growth more than the gravel Culture method. And the treatment of low level nitrogen (A plot) in this water culture also saw a considerable degree of tuber formation, as in the case of gravel culture. 4) The foliar application of growth retardant B-nine suppressed the plant length only, with no other recognizable effect. II. Fffects of urea supplying level on the growth of IPOMOEA BATATAS. 1) The higher level of urea which was absorbed tby roots through nutrient solution suppressed top growth, such as plant length, number of leaves and fresh weight. And this can be attributed to the direct absorption of urea which was not ammonificated. 2) Although the higher level of nitrate nitrogen (B plot) made no tuber formation in previous experiment (Report-1), the higher level of urea nitrogen (A plot) made tuber formation possible in this experiment. The ratio of tuber to top was, however, less in higher level of urea than in lower level of urea, and the suppressing effect was larger on tuber than on top. 3) The foliar application of urea stimulated top growth while the higher level of urea absorbed by roots suppressed it, though the amounts of urea supplied in two experiments were same. Ratio of top to roots was larger in foliar application of urea (C plot) and less in root absorption of urea both of higher (B plot) and lower urea levels (A plot). III. Fffects of growth retardant etc. on the growth of IPOMOEA BATATAS in relation to urea application. 1) B-nine (N-dimethyl amino-succinamic acid) is recognized as a growth retardant, suppressed the plant length irrespective of urea levels. The treatment of gibberellin stimulated distinctly plant length, and the combined treatment of gibberellin and B-nine recovered completely the plant length which had been suppressed by B-nine. 2) B-nine increased fresh weight, especially, fresh weight of top both in lower and higher level of The degree of fresh weight increase varied according to concentrations of B-nine, of which the 0.15% of B-nine ($B_1$ plot) was the effective in higher level of urea. The effect of B-nine for increasing fresh weight was the largest in top next in tuber, and the least in fibrous roots. The ratio of fibrous roots to top was always decreased by B-nine application, which the ratio of tuber to top was contrary increased by B-nine in higher level of urea though decreased in lower level of urea. 3) Gibberellin treatment also increased fresh weight but the combined treatment ($B_3$+GA plot) of gibberellin and B-nine was even more effective than any of single treatments. Gibberellin and B-nine proved to be synergistic with fresh weight while reverse with plant length. 4) Considerable influences were abserved mainly in the length of plants and their fresh weight after B-nine treatment. So that B-nine may be reguraded as a metabolic controller rather than as an antimetabolite. 5) The surpressed growth of plants cause by higher level of urea was normalized by B-nine treatment. This fact suggested a further study on the applicability for practical use.

  • PDF

9 Provinces and 5 Secondary Capitals, Myeong-ju(Haseo-ju) - Revolve Around Urban Structure - (구주오소경과 명주(하서주) - 그 도시구조를 중심으로 -)

  • Takahumi, Yamada
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.2
    • /
    • pp.20-37
    • /
    • 2012
  • After withdrawal of military troops of Chinese Tang dynasty in the 18th year of King Moon-moo's reign(678), the Silla Kingdom had actually unified the Korean peninsula and had divided the territory into 9 states benchmarking the China's local administrations adjustment system. He had established local administrative units by deploying secondary capitals, counties and prefectures in the nine states. The so-called "9 Provinces and 5 Secondary capitals" are what constitutes the local administrations system. The provinces can be compared to current provinces of the Republic of Korea(hereinafter Korea), and secondary capitals to megalopolises. According to a chapter of the Samkuksaki(三?史記) which had recorded the achievements of king Kyoungdeok in December in his 16th year on the throne(757), the local administrative units had amounted to 5 secondary capitals, 117 counties and 293 prefectures. There are still lots of ambiguous points since there have never been any consultation on locations of provinces and secondary capitals' castles, and on structures of cities because the researches for local cities inside the 9 Provinces and 5 Secondary capitals in the Unified Silla Kingdom has been conducted centering on the historic literatures only. The research for restoring structures of cities seen from an archeological perspective are limited to the studies of Taewoo Park("A study on the local cities in the Unified Kingdom Age" 1987) and that of the author("A study on the restoration of planned cities for the Unified Silla Kingdom in terms of the structures and realities of the castles in the 9 Provinces and 5 Secondary capitals" 2009). The Gangneung city of Gangwon province was originally called Haseoryang(河西良) of the Gogureo Kingdom as an ancient nation of Ye(濊). According to "Samkuksaki", it had evolved from Haseoju(河西州) to a secondary capitals in the 8th year of King Seonduk(639). Afterwards, it had been renamed as Myeongju(溟洲) in the 16th year of King Kyoungduk(757), and then several other names were given to it after Goryo dynasty. Taewoo Park claims that it is being defined as a sanctuary remaining in Myoungjudong because of the vestige of bare castle, and this cannot be ascertained due to the on-going urbanization processes. Also, the Kwandong university authority is suggesting an opinion of regarding Myeongju mountain castle located 3 Kms southwest of the center of Gangwon city as commanding post for the pertinent state. The author has restored the pertinent area into a city composed of villages within a lattice framework like Silla Keumkyoung and many other cities. The structure is depicted next. The downtown of Gangneung is situated on a flat terrain at the west bank of Namdaecheon stream flowing southwest to northeast along the inner area of the city. Though there isn't any hill comparatively higher than others in the vicinity, hills are continuously linked east to west along the northern area of the downtown, and the maximum width of flat terrain is about 1 Km and is not so large. Currently, urbanization is being proceeded into the inner portion of Gangneung city, the lands in all directions from the hub of Gangneung station have been readjusted, and thus previous land-zoning program is almost nullified. However, referring to the topographic chart drawn at the time of Japanese colonial rule, it can be validated that land-zoning program to accord the lattice framework with the length of its one side equaling to 190m leaves its vestige about 0.8Km northwest to southeast and about 1.7Km northeast to southwest of the vicinity of Okcheondong, Imdangdong, Geumhakdong, Myeongjudong, and etcetera which comprize the hub of the downtown. The land-zoning vestige within the lattice framework, compared to other cases related with the '9 states and 5 secondary capitals', is very much likely to be that of the Unified Silla Kingdom. That the length of a side of a lattice framework is 190m as opposed to that of Silla Geumkyoung and other cities with their 140m or 160m long sides is a single survey item in the future. The baseline direction for zoning the lands is tilting approximately 37.5 degrees west of northwest to southeast axis in accordance with the topographic features. It seems that this phenomenon takes place because of the direction of Namdaecheon and the geographic constraints of the hills in the north. Reviewing minimally, a rectangular size of zoned land by 4 Pangs(坊) on the northwest to southeast side multiplied by 7 Pangs(坊) on the northeast to southwest side had been restored within a lattice framework. Otherwise, considering the extent of expansion of the existing zoned lands in the lattice framework and one more Pang(坊) being added to each side, it is likely that the size could have been with 5 Pangs(坊) on the northwest to southeast side multiplied by 8 Pangs(坊) on the northeast to southwest side(950 M on the northwest to southeast side multiplied by 1,520m on the northeast to southwest side). The overall shape is rectangle, but land-zoning programs reminiscent of rebuilt roads(red phoenix road) like Jang-an castle(長安城) of Chinese Tang dynasty or Pyoungseong castle(平城城) in Japan is not to be validated. There are some historic items among the roof tiles and earthen wares excavated at local administrative office sites or Gangneung's town castle in Joseon dynasty inside the area assumed to be containing municipal vestiges even though archeological survey for the vestige of Myeongju has not been made yet, and these items deserve dating back to the Unified Silla Kingdom age. Also, all of the construction sites at local administrative authorities of the Joseon dynasty are showing large degrees of slant in the azimuth. This is a circumstantial evidence indicating the fact that the inherited land-zoning programs to be seen in Gangneung in terms of the lattice framework had ever existed in the past. Also, the author does not decline that Myeongju mountain castle had once been the commanding post when reviewing the roof tiles at the edge of eaves in this stronghold. The ancient municipal castles in the Korean peninsula are composed of castles on the flat terrain as well as hilly areas and the cluster of strongholds like Myounghwal, Namhan, Seohyoung mountain castles built around municipal castle of Geumkyoung based on a lattice framework program. Considering that mountain castles are spread in the vicinity of municipal vestiges in other cities other than the 9 states and 5 secondary capitals, it is estimated that Myeongju was assuming the function of commanding post incorporating cities on the flat terrain and castles on the hills.

An Analytical Study on the Stem-Growth by the Principal Component and Canonical Correlation Analyses (주성분(主成分) 및 정준상관분석(正準相關分析)에 의(依)한 수간성장(樹幹成長) 해석(解析)에 관(關)하여)

  • Lee, Kwang Nam
    • Journal of Korean Society of Forest Science
    • /
    • v.70 no.1
    • /
    • pp.7-16
    • /
    • 1985
  • To grasp canonical correlations, their related backgrounds in various growth factors of stem, the characteristics of stem by synthetical dispersion analysis, principal component analysis and canonical correlation analysis as optimum method were applied to Larix leptolepis. The results are as follows; 1) There were high or low correlation among all factors (height ($x_1$), clear height ($x_2$), form height ($x_3$), breast height diameter (D. B. H.: $x_4$), mid diameter ($x_5$), crown diameter ($x_6$) and stem volume ($x_7$)) except normal form factor ($x_8$). Especially stem volume showed high correlation with the D.B.H., height, mid diameter (cf. table 1). 3) (1) Canonical correlation coefficients and canonical variate between stem volume and composite variate of various height growth factors ($x_1$, $x_2$ and $x_3$) are ${\gamma}_{u1,v1}=0.82980^{**}$, $\{u_1=1.00000x_7\\v_1=1.08323x_1-0.04299x_2-0.07080x_3$. (2) Those of stem volume and composite variate of various diameter growth factors ($x_4$, $x_5$ and $x_6$) are ${\gamma}_{u1,v1}=0.98198^{**}$, $\{{u_1=1.00000x_7\\v_1=0.86433x_4+0.11996x_5+0.02917x_6$. (3) And canonical correlation between stem volume and composite variate of six factors including various heights and diameters are ${\gamma}_{u1,v1}=0.98700^{**}$, $\{^u_1=1.00000x_7\\v1=0.12948x_1+0.00291x_2+0.03076x_3+0.76707x_4+0.09107x_5+0.02576x_6$. All the cases showed the high canonical correlation. Height in the case of (1), D.B.H. in that of (2), and the D.B.H, and height in that of (3) respectively make an absolute contribution to the canonical correlation. Synthetical characteristics of each qualitative growth are largely affected by each factor. Especially in the case of (3) the influence by the D.B.H. is the most significant in the above six factors (cf. table 2). 3) Canonical correlation coefficient and canonical variate between composite variate of various height growth factors and that of the various diameter factors are ${\gamma}_{u1,v1}=0.78556^{**}$, $\{u_1=1.20569x_1-0.04444x_2-0.21696x_3\\v_1=1.09571x_4-0.14076x_5+0.05285x_6$. As shown in the above facts, only height and D.B.H. affected considerably to the canonical correlation. Thus, it was revealed that the synthetical characteristics of height growth was determined by height and those of the growth in thickness by D.B.H., respectively (cf. table 2). 4) Synthetical characteristics (1st-3rd principal component) derived from eight growth factors of stem, on the basis of 85% accumulated proportion aimed, are as follows; Ist principal component ($z_1$): $Z_1=0.40192x_1+0.23693x_2+0.37047x_3+0.41745x_4+0.41629x_5+0.33454x_60.42798x_7+0.04923x_8$, 2nd principal component ($z_2$): $z_2=-0.09306x_1-0.34707x_2+0.08372x_3-0.03239x_4+0.11152x_5+0.00012x_6+0.02407x_7+0.92185x_8$, 3rd principal component ($z_3$): $Z_3=0.19832x_1+0.68210x_2+0.35824x_3-0.22522x_4-0.20876x_5-0.42373x_6-0.15055x_7+0.26562x_8$. The first principal component ($z_1$) as a "size factor" showed the high information absorption power with 63.26% (proportion), and its principal component score is determined by stem volume, D.B.H., mid diameter and height, which have considerably high factor loading. The second principal component ($z_2$) is the "shape factor" which indicates cubic similarity of the stem and its score is formed under the absolute influence of normal form factor. The third principal component ($z_3$) is the "shape factor" which shows the degree of thickness and length of stem. These three principal components have the satisfactory information absorption power with 88.36% of the accumulated percentage. variance (cf. table 3). 5) Thus the principal component and canonical correlation analyses could be applied to the field of forest measurement, judgement of site qualities, management diagnoses for the forest management and the forest products industries, and the other fields which require the assessment of synthetical characteristics.

  • PDF

Mineral Nutrition of the Field-Grown Rice Plant -[I] Recovery of Fertilizer Nitrogen, Phosphorus and Potassium in Relation to Nutrient Uptake, Grain and Dry Matter Yield- (포장재배(圃場栽培) 수도(水稻)의 무기영양(無機營養) -[I] 삼요소이용률(三要素利用率)과 양분흡수량(養分吸收量), 수량(收量) 및 건물생산량(乾物生産量)과(乾物生産量)의 관계(關係)-)

  • Park, Hoon
    • Applied Biological Chemistry
    • /
    • v.16 no.2
    • /
    • pp.99-111
    • /
    • 1973
  • Percentage recovery or fertilizer nitrogen, phosphorus and potassium by rice plant(Oriza sativa L.) were investigated at 8, 10, 12, 14 kg/10a of N, 6 kg of $P_2O_5$ and 8 kg of $K_2O$ application level in 1967 (51 places) and 1968 (32 places). Two types of nutrient contribution for the yield, that is, P type in which phosphorus firstly increases silicate uptake and secondly silicate increases nitrogen uptake, and K type in which potassium firstly increases P uptake and secondly P increases nitrogen uptake were postulated according to the following results from the correlation analyses (linear) between percentage recovery of fertilizer nutrient and grain or dry matter yields and nutrient uptake. 1. Percentage frequency of minus or zero recovery occurrence was 4% in nitrogen, 48% in phosphorus and 38% in potassium. The frequency distribution of percentage recovery appeared as a normal distribution curve with maximum at 30 to 40 recovery class in nitrogen, but appeared as a show distribution with maximum at below zero class in phosphorus and potassium. 2. Percentage recovery (including only above zero) was 33 in N (above 10kg/10a), 27 in P, 40 in K in 1967 and 40 in N, 20 in P, 46 in Kin 1968. Mean percentage recovery of two years including zero for zero or below zero was 33 in N, 13 in P and 27 in K. 3. Standard deviation of percentage recovery was greater than percentage recovery in P and K and annual variation of CV (coefficient of variation) was greatest in P. 4. The frequency of significant correlation between percentage recovery and grain or dry matter yield was highest in N and lowest in P. Percentage recovery of nitrogen at 10 kg level has significant correlation only with percentage recovery of P in 1967 and only with that of potassium in 1968. 5. The correlation between percentage recovery and dry matter yield of all treatments showed only significant in P in 1967, and only significant in K in 1968, Negative correlation coefficients between percentage recovery and grain or dry matter yield of no or minus fertilizer plots were shown only in K in 1967 and only in P in 1968 indicating that phosphorus fertilizer gave a distinct positive role in 1967 but somewhat' negative role in 1968 while potassium fertilizer worked positively in 1968 but somewhat negatively in 1967. 6. The correlation between percentage recovery of nutrient and grain yield showed similar tendency as with dry matter yield but lower coefficients. Thus the role of nutrients was more precisely expressed through dry matter yield. 7. Percentage recovery of N very frequently had significant correlation with nitrogen uptake of nitrogen applied plot, and significant negative correlation with nitrogen uptake of minus nitrogen plot, and less frequently had significant correlation with P, K and Si uptake of nitrogen applied plot. 8. Percentage recovery of P had significant correlation with Si uptake of all treatments and with N uptake of all treatments except minus phosphorus plot in 1967 indicating that phosphorus application firstly increases Si uptake and secondly silicate increases nitrogen uptake. Percentage recovery of P also frequently had significant correlation with P or K uptake of nitrogen applied plot. 9. Percentage recovery of K had significant correlation with P uptake of all treatments, N uptake of all treatments except minus phosphorus plot, and significant negative correlation with K uptake of minus K plot and with Si uptake of no fertilizer plot or the highest N applied plot in 1968, and negative correlation coefficient with P uptake of no fertilizer or minus nutrient plot in 1967. Percentage recovery of K had higher correlation coefficients with dry matter yield or grain yield than with K uptake. The above facts suggest that K application firstly increases P uptake and secondly phosphorus increases nitrogen uptake for dry matter yied. 10. Percentage recovery of N had significant higher correlation coefficient with grain yield or dry matter yield of minus K plot than with those of minus phosphorus plot, and had higher with those of fertilizer plot than with those of minus K plot. Similar tendency was observed between N uptake and percentage recovery of N among the above treatments. Percentage recovery of K had negative correlation coefficient with grain or-dry matter yield of no fertilizer plot or minus nutrient plot. These facts reveal that phosphorus increases nitrogen uptake and when phosphorus or nitrogen is insufficient potassium competatively inhibits nitrogen uptake. 11. Percentage recovery of N, Pand K had significant negative correlation with relative dry matter yield of minus phosphorus plot (yield of minus plot x 100/yield of complete plot; in 1967 and with relative grain yield of minus K plot in 1968. These results suggest that phosphorus affects tillering or vegetative phase more while potassium affects grain formation or Reproductive phase more, and that clearly show the annual difference of P and K fertilizer effect according to the weather. 12. The correlation between percentage recovery of fertilizer and the relative yield of minus nutrient plat or that of no fertilizer plot to that of minus nutrient plot indicated that nitrogen is the most effective factor for the production even in the minus P or K plot. 13. From the above facts it could be concluded that about 40 to 50 percen of paddy fields do rot require P or K fertilizer and even in the case of need the application amount should be greatly different according to field and weather of the year, especially in phosphorus.

  • PDF