• Title/Summary/Keyword: 사소 마그네시아

Search Result 3, Processing Time 0.015 seconds

Physical and Environmental Properties According to Borax Addition Ratios of Inorganic Filling Adhesive using Magnesia Silicate Phosphate (마그네시아 실리케이트 인산염을 활용한 무기충전 접착재의 붕사 첨가율에 따른 물리·환경적 특성)

  • Kim, Tae-Hyun;Shin, Jin-Hyun;Lee, Sang-So
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.141-147
    • /
    • 2017
  • The purpose of this study is to develop an inorganic filling adhesive using MKP and borax based on Dead-burn magnesia and fly ash. First, basic experiments was conducted to derive the proper addition rate of MKP. And this experiment was carried out according to addition ratio of borax. The test items are measured for pot life, flexural strength, compressive strength, adhesive strength, tensile strength, ratio of temperature change, ratio of hardening shrinkage, radon gas and formaldehyde emission. As a result, the proper addition rate of phosphate was 35%. The pot time is about 10minutes, 15minutes and 25minutes according to addition rate of borax. The flexural strength and compressive strength were obtained at 12hours for minimum flexural strength of 8.0MPa and minimum compressive strength of 31.0MPa. The tensile strength was the least 4.1MPa, and the ratio of hardening shrinkage was maximum 2.4% and ratio of heat change was maximum - 0.3%, which satisfied all of the quality standards of 'KS F 4923' (epoxy resin for repairing concrete structures). Both Radon gas and formaldehyde emission was not detected.

Strength properties of inorganic adhesives using dead burned magnesia and phosphate according to addition ratio of borax (사소마그네시아와 인산염을 활용한 무기접착재의 붕사첨가율에 따른 강도특성)

  • Kim, Dae-Yeon;Pyeon, Su-Jeong;Lim, Jeong-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.48-49
    • /
    • 2018
  • Recently the old buildings have been increasing and increasing reconstruction. As a result, the frequency of use of architectural adhesives has increased. Adhesives are not only used for bonding but also for building materials used in various fields. However, since the adhesive is made of an organic material, it causes various skin diseases and sick house syndrome, and when a fire occurs, harmful substances are generated, and incomplete combustion may cause personal injury. Therefore, in this study, to solve the disadvantages of conventional adhesives, we tried to develop inorganic adhesives using inorganic materials.

  • PDF

Properties of Harmful Substances Absorption Eco-friendly Artificial Stone Containing Basalt Waste Rock (현무암 폐석을 첨가한 유해물질 흡착 친환경 인조석재의 특성)

  • Pyeon, Su-Jeong;Gwon, Oh-Han;Kim, Tae-Hyun;Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.431-438
    • /
    • 2016
  • Recently, Both rapid economic growth and high-quality native finishing materials demand in buildings such as local infrastructure facilities and cultural facilities have increased along with local quarries. So, increasing local quarries and environmental pollution occurred in quarries get the eyes to damaged area of the surroundings. As an example, carcinogen such as solid formed to fixing asbestos and dust have damaged to local resident. Especially, Radon gas released from asbestos can exist everywhere on earth, released soil and rock as radioactive substances, can be caused lung cancer followed by a smoking. When pollution source to indoor air quality that lacking ventilation rate of the residential building moved in a cycle, human responses such as headache, dizziness, etc. get appear, so on it threatened resident's physical condition. Thus, we need to urgent attention to reduction harmful substance. In the case of radon gas of the pollution source to indoor air quality in housing, it has characteristic that keep on going through half-life released from source, we need to control radon gas source than source removal. We set on vermiculite addition ratio to 10% which has harmful substances adsorption performance, proceed experiment to basalt waste rock addition ratio 50, 60, 70, 80(%). The result of an experiment, based on 'KS F 4035, precast terrazzo', we can be obtainable in the best terrazzo at basalt waste rock addition ratio 70%.