• Title/Summary/Keyword: 사방

Search Result 473, Processing Time 0.031 seconds

Estimation of Sediment Discharge Controlled by Sediment-filled Check-dam in a Forested Catchment (산림유역의 만사 사방댐에 의한 토사유출 조절 효과 추정)

  • Seo, Jung Il;Chun, Kun Woo;Song, Dong Geun
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.321-329
    • /
    • 2016
  • To estimate the sediment discharge controlled by sediment-filled check-dam and thereby enhancing factor for check-dam design and dredging criteria, we surveyed slope failures and stream-bed fluctuation caused by geomorphic disturbances (i.e., landslides and debris flows) in Inje, Gangwondo. In general, check-dams play roles for restraining and controlling sediment discharge within a section under the design equilibrium gradient and a section under the design flood gradient, respectively. The results in this study showed same pattern: that is, the closed type check-dam, which has a design restraint sediment discharge of $2,111m^3$, estimated to control a sediment discharge of $3,996m^3$ in the stream section within 250 m right upper area immediately after the disturbances occurred in 2006. As a result, a design control sediment discharge of the check-dam was larger than its design restraint sediment discharge. This represents that the check-dam is still having an own function for controlling sediment discharge although it exceeded the designed capacity by the sediment discharged from upstream during the disturbances. Our finding suggests that the sediment discharge controlling of check-dam may need to be evaluated separately from its sediment discharge restraint. Currently, the country, however, does not consider the design control (or restraint) sediment discharges, based on the actual field survey, as criteria for check-dam design and/or dredging work. Therefore, the accumulation of the quantitative data is required to support that check-dam has functions for both restraining and controlling sediment discharge. This would be a way to develop our erosion control technology to the scientific technology equipped with a more objective and systematic aspects.

Efficiency of Soil Erosion to a Debris Barrier using GIS (GIS를 이용한 사방댐의 토사유실 저감효과 분석)

  • Lee, Geun-Sang;Lee, Moung-Jin;Hong, Hyun-Jung;Hwang, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.158-168
    • /
    • 2007
  • This study analyzed the reduction efficiency to a debris barrier planed with the Office of Forestry and local provinces among diverse measurements for the diminution of high-density turbid water and soil erosion of Soyang reservoir. As the analysis of soil erosion of Soyang river basin applying rainfall data (2005) and GIS database, soil erosion is estimated as 4,819,494 ton. Also, in the analysis of unit soil erosion, Chugok-, Jaun-, and Ohang stream shows high value comparing with other watersheds. Debris barrier watersheds are extracted as the center of 94 debris barrier points using GIS spatial analysis. As the analysis of soil erosion and sediment delivery ratio (SDR) of debris barrier watershed, the reduction efficiency of soil erosion of debris barrier of 2005 is analyzed as 6.8%, that is 330,203 ton. Also, the reduction efficiency of soil erosion of debris barrier of 2005 increases as 10.5%, that is 506,783 ton, when the locations of debris barrier are changed into the high soil erosion area over 5,000 ton.

  • PDF

Debris Flow Dam Positioning Improving by Numerical Analysis (수치해석을 통한 토석류사방댐 설치위치개선에 관한 연구)

  • Jang, Chang Deok;Jun, Kye Won;Jun, Byong Hee;Yeon, Gyu Bang
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.49-49
    • /
    • 2011
  • 토석류(Debris flow)는 산지사면이나 계곡 등에서 진흙과 돌덩어리 등을 포함하는 토석 그 자체 또는 토석과 물의 일체가 유체의 상으로 흘러내리는 흐름을 말하는 것으로 발생을 예측하기가 곤란하며, 하류에 도로가 존재하거나 인근에 민가가 있을 시 막대한 피해를 가져오는 자연현상이다. 또한 산지계곡에서 발생하는 토석류는 발생장소와 시기가 서로 떨어져 있어 연구를 진행하는데 어려움이 있다. 국내에서는 토석류피해의 저감을 위한 방법으로 주로 토석류 대책 사방댐의 설치를 선택하고 있다. 하지만 사방댐의 설치위치는 현재까지 모호한 결정기준에 의지하고 있어 이에 대한 개선이 필요한 실정이다. 본 연구에서는 3차원 정밀좌표를 손쉽게 취득할 수 있는 삼차원 광대역 레이저 스캐너를 이용하여 토석류 발생 가능성이 높은 지역의 지형자료를 취득하고 토석류를 해석할 수 있는 1차원 수치모형을 이용하여 토석류 유출량을 예측하였다. 또한 사방댐의 설치위치결정에 대한 참고자료로 활용하기 위해 사방댐의 토석류피해 저감효과를 설치위치에 따라 분석하였다. 모형의 적용결과 토석류 발생 저감을 위해 설치한 사방시설의 위치에 따른 토석류 저감효과를 비교 확인할 수 있었다.

  • PDF

A Study on Public Awareness of Landslide and Check Dam Using the Big Data Platform 'Hyean' (공공 빅데이터 플랫폼 '혜안'을 통한 산사태 및 사방댐 인식 분석)

  • Sohee Park;Min Jeng Kang;Song Eu
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.687-698
    • /
    • 2022
  • Purpose: This study was conducted to understand the public awareness of landslide and check dams in 2015-2020 using the big data platform 'Hyean' and to confirm the utilization of this platform in disaster prevention areas. Method: The total amount, number of detection by period by media, and affirmative and negative trends of a search for 'landslide' and 'check dam' in 2015-2020 were analyzed using a keyword search of 'Hyean.' Result: There is significant lack of public awareness of check dam compared to landslide, and the trend is more noticeable in the conspicuous gap of data amount between the news and SNS media. The number and the timing of the search for 'landslide' coincided with the actual occurrence of landslide, while the detection of 'check dam' was less related to it. Relatively affirmative preception for the check dam is inferred, but it was difficult to confirm accurate statistical affirmative and negative trends in the disaster prevention field using 'Hyean.' Conclusion: Unlike the experts who expect positive public awareness of check dam, the statistic results show that the public awareness of the check dam as an effective countermeasure against landslide was extremely low. Active promotion of erosion control projects should be carried out first, and a balanced sample survey should accompany online and periodic field surveys. Since there is a limit to grasping the effective perception in the field of disaster prevention area using 'Hyean', it should be very cautious to establish local/governmental policies using it.

Suitable Site Prediction of Erosion Control Dam by Sediment (산지사면에 있어서 퇴사량에 의한 사방댐의 시공적지 예측)

  • Ma, Ho-Seop;Jeong, Won-Ok
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.300-306
    • /
    • 2007
  • This study was carried out to analyze the characteristics of forest environmental and stream morphological factors by using the quantification theory (I) for prediction of the suitable dam site. The results obtained from this study were summarized as follows; The selection of suitable site for erosion control dam was estimated by normalized score of each category. And the prediction method of suitable site for erosion control dam divided into class I (Very suitable site), II (Suitable site), and III (Poor suitable site) for the convenience of use. In conclusion, if we select the suitable site for construction of erosion control dam for disaster prevention, we could save the loss of tremendous budget, avoid the poor suitable site due to subjective judgment, and it would promote the functions of erosion control dam.

Follow-up Maintenance System Development for the Forest Erosion Control Structures (산지사방공작물(山地砂防工作物)의 사후관리기술체계설정(事後管理技術體系設定)을 위한 조사연구(調査硏究))

  • Woo, Bo Myeong;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.2
    • /
    • pp.145-160
    • /
    • 1987
  • To evaluate damage status and necessities of repair works on the forest-side erosion control structures constructed from 1966 to 1986 in Korea, developmental procedures of erosion control structures from the standard unit-cost tables established by the Forestry Administration every year, existing counter-measures for disaster erosion control system administrated by the government organization and existing status of each structure at constructed site were investigated and analyzed integrally. About 10-15% of the constructed forest erosion control structures were required to be repaired as a result of the investigation. It is actually incapable of repairing the damaged forest erosion control structures caused by excessive run-off and floodings under the existing forest-side erosion control systems. Therefore, it is necessary to put regularly repair erosion control system that will be secured by national budgetary pre-allocation system. Especially, it is also necessary to frame a new system that repair erosion control works by national budget (central government) should be possible for any scale of damages in case of the erosion control projects for the disaster counter-measures. The results of this research could be adopted as important policy data for erosion control policy-making in forest-side in Korea.

  • PDF

Development of the Dredged Sediments Management System and Its Managing Criteria of Debris Barrier (사방댐 준설퇴적물 관리시스템 개발 및 관리기준 제안)

  • Song, Young-Suk;Yun, Jung-Mann;Jung, In-Keun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.267-275
    • /
    • 2018
  • The dredged sediment management system was developed to have an objective, quantitative and scientific decision for the optimum removal time of dredged sediments behind debris barrier and was set up at the real site. The dredged sediment management system is designed and developed to directly measure the dredged sediments behind debris barrier in the field. This management system is composed of Data Acquisition System (DAS), Solar System and measurement units for measuring the weight of dredge sediments. The weight of dredged sediments, the water level and the rainfall are measured in real time using the monitoring sensors, and their data can be transmitted to the office through a wireless communication method. The monitoring sensors are composed of the rain gauge to measure rainfall, the load cell system to measure the weight of dredged sediments, and water level meter to measure the water level behind debris barrier. The management criteria of dredged sediments behind debris barrier was suggested by using the weight of dredged sediments. At first, the maximum weight of dredged sediments that could be deposited behind debris barrier was estimated. And then when 50%, 70% and 90% of the maximum dredged sediments weight were accumulated behind debris barrier, the management criteria were divided into phases of Outlooks, Watch and Warning, respectively. The weight of dredged sediments can be monitored by using the dredged sediment management system behind debris barrier in real time, and the condition of debris barrier and the removal time of dredged sediments can be decided based on monitoring results.

The Application of the AHP Analysis Method to Prepare the Selection Standards for the Target Site of Check Dams (사방댐 대상지 선정 기준마련을 위한 AHP 분석기법의 적용)

  • Bea, Hyun-Seok;Lee, Kwang-Youn;Choi, Young-Jin;Lee, Jin-Ho;Woo, Choong-Shik;Chun, Kun-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.446-453
    • /
    • 2020
  • By applying the Analytic Hierarchy Process(AHP) method, we calculated the weight of factors related to the selection of check dam sites and generated basic data related to the selection of the target site. As a result of the AHP classification, three evaluation items(Susceptibility, Vulnerability, and Constructability), 12 evaluation factors (Susceptibility 10, Vulnerability, and Constructability 1), and two-six evaluation criteria in each evaluation factor were selected. After calculating the relative importance by using the selected evaluation items, evaluation factors, and criteria, the vulnerability items such as medical facilities, facilities for the aged, educational facilities, and private homes were found to be higher than the other items. When the relative weight for deciding qualified sites was applied to the forest watersheds in the Gangwon region, 8,601 forest watersheds(35.2 % of the total forest watersheds) were found to be suitable for the installation of check dams.

Analysis of Forest Environmental Factors on Torrent Erosion control work area in Gyeongsangnam-do - Focus on Erosion Control Dam and Stream Conservation - (경남지역 야계사방사업지의 산림환경특성 분석 - 사방댐 및 계류보전사업을 중심으로 -)

  • Kang, Min-Jeng;Kim, Ki-Dae;Oh, Kang-San;Park, Jin-Won;Park, Jae-Hyeon
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.111-120
    • /
    • 2016
  • The objective of this study was to provide basic information for selecting the right timing and the right place of erosion control of stream on Gyeongsangnam-do. In order to achieve this objective, a total of 526 erosion control dams and 230 mountains stream conservation facilities on the constructed places and construction planned places for the erosion control were investigated on site, forest physiognomy, and hydrologic conditions. The erosion control dams and mountain stream conservation facilities were mostly constructed in the area, which has the sedimentary rock, 200-400m of altitude, a slope of 21~30°, and II of landslide hazard map. Among the forest environmental factors, it was only similar to the construction frequency in the areas that have small diameter class, III age class. Also, we investigated the hydrological environmental factors that determine the size and numbers of erosion control dam. The places constructed to the highest frequency were below 50ha in the area, 2.1~4.0km/㎢ of drainage density, longitudinal water system, 61~90mm of maximum precipitation per hour, and 201~300mm of day maximum precipitation. As the results, the sites and floodgate conditions between the constructed places and stream conservation facilities for the erosion control showed to be very similar. Therefore, these results indicate that the erosion control of the stream of the areas, which have the disruption of mountain peaks and the high erosion risk areas, should be used on both the erosion control dam and stream conservation facilities.

Analysis of the Adequacy Check Dam according to Soil Loss using RUSLE (RUSLE 모형으로 토사유실에 따른 사방댐 적정성 분석)

  • Choi, Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.515-524
    • /
    • 2016
  • Damage such as landslides has been caused by natural phenomenon like a heavy rain. As appropriate countermeasures, rather than analysing the cause of the landslide, we used methods of check dam installation and maintenance mountain basin. A check dam is a small, sometimes temporary, dam constructed across a swale, drainage ditch, or waterway to counteract erosion by reducing water flow velocity. In this study, we analysed the adequacy of check dam built to prevent further damage after landslides through GIS and examined the sediment erosion in the existing check dams for an ideal location of check dam, considering the accessibility and size. As a result of reviewing soil loss in the study watershed according to RUSLE(Revised Universal Soil Loss Equation), the basin I had about 2% soil loss reduction, the basin II showed less than 1 % soul loss reduction, and basin III showed the reducing effect of 5 % soil erosion.