• Title/Summary/Keyword: 사물 검출

Search Result 78, Processing Time 0.024 seconds

A Research on Object Detection Technology for the Visually Impaired (시각장애인을 위한 사물 감지 기술 연구)

  • Jeong, Yeon-Kyu;Kim, Byung-Gyu;Lee, Jeong-Bae
    • The KIPS Transactions:PartB
    • /
    • v.19B no.4
    • /
    • pp.225-230
    • /
    • 2012
  • In this paper, a blind person using a white cane as an adjunct of the things available sensing technology has been implemented. Sensing technology to implement things ultrasonic sensors and a webcam was used to process the data from the server computer. Ultrasonic sensors detect objects within 4meter people distinguish between those things that if the results based on the results will sound off. In this study, ultrasonic sensors, object recognition and human perception with the introduction of techniques and technologies developed for detecting objects in the lives of the visually impaired is expected to be greater usability.

Detecting the Number of Pedestrians for Context Awareness (상황 인지를 위한 보행자 수 검출)

  • Ham, Seunghak;Zhang, Xu;Jang, Eungyeong;Lee, Jinsil
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.1016-1017
    • /
    • 2018
  • 사물인터넷 환경에서 획득되는 상황 인지 데이터들 중에 특히 이동 객체에 대한 정보를 담은 데이터는 상황 인지의 여러 응용 분야에 매우 유용하다. 하지만, 실시간으로 보행자를 검출하게 되면 인원이 중첩되거나 보행자가 아닌 사물이 검출 되는 현상이 발생한다. 정확한 보행자 검출을 위해 사물인터넷 환경에서 얻을 수 있는 영상에서 다양한 크기와 위치의 수많은 블록들로부터 HOG를 계산하고 유의미한 블록들을 선별해서 보행자 수를 검출한다. 검출된 보행자 수는 서버에 저장되어 특정 공간의 이용자 수를 알아내는데 사용된다.

Towards Real Time Detection of Rice Weed in Uncontrolled Crop Conditions (통제되지 않는 농작물 조건에서 쌀 잡초의 실시간 검출에 관한 연구)

  • Umraiz, Muhammad;Kim, Sang-cheol
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.1
    • /
    • pp.83-95
    • /
    • 2020
  • Being a dense and complex task of precisely detecting the weeds in practical crop field environment, previous approaches lack in terms of speed of processing image frames with accuracy. Although much of the attention has been given to classify the plants diseases but detecting crop weed issue remained in limelight. Previous approaches report to use fast algorithms but inference time is not even closer to real time, making them impractical solutions to be used in uncontrolled conditions. Therefore, we propose a detection model for the complex rice weed detection task. Experimental results show that inference time in our approach is reduced with a significant margin in weed detection task, making it practically deployable application in real conditions. The samples are collected at two different growth stages of rice and annotated manually

Pedestrian detection system development based on Adaboost algorithm and Linear Kalman filter (Adaboost학습알고리듬과 선형Kalman filter를 이용한 보행자 검출시스템 개발)

  • Kwon, Tae-Hyun;Wee, Seungwoo;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.85-88
    • /
    • 2017
  • 보행자 검출을 위한 기술이 많이 개발되고 있으며 HOG(Histograms of oriented)와 haar-like feature를 이용한 특징값 검출을 통해 보행자를 검출하는 방법들이 대표적이라 할 수 있다. 하지만 이 방법들은 보행자가 사물에 가려졌을 때 보행자를 검출하지 못한다는 단점이 있다. 이에 본 논문에서는 haar-like feature와 adaboost 학습알고리듬을 이용하여 보행자를 검출하고 kalman filter를 이용하여 보행자가 특정 사물에 가려지는 것 과 같은 occlusion 문제를 해결하여 보행자 검출 성능을 높이고자 하였다.

  • PDF

Image Stitching focused on Priority Object using Deep Learning based Object Detection (딥러닝 기반 사물 검출을 활용한 우선순위 사물 중심의 영상 스티칭)

  • Rhee, Seongbae;Kang, Jeonho;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.882-897
    • /
    • 2020
  • Recently, the use of immersive media contents representing Panorama and 360° video is increasing. Since the viewing angle is limited to generate the content through a general camera, image stitching is mainly used to combine images taken with multiple cameras into one image having a wide field of view. However, if the parallax between the cameras is large, parallax distortion may occur in the stitched image, which disturbs the user's content immersion, thus an image stitching overcoming parallax distortion is required. The existing Seam Optimization based image stitching method to overcome parallax distortion uses energy function or object segment information to reflect the location information of objects, but the initial seam generation location, background information, performance of the object detector, and placement of objects may limit application. Therefore, in this paper, we propose an image stitching method that can overcome the limitations of the existing method by adding a weight value set differently according to the type of object to the energy value using object detection based on deep learning.

Rule-Based Filler on Misidentification of Vision Sensor for Robot Knowledge Instantiation (Vision Sensor를 사용하는 로봇지식 관리를 위한 Rule 기반의 인식 오류 검출 필터)

  • Lee, Dae-Sic;Lim, Gi-Hyun;Suh, Il-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.349-350
    • /
    • 2008
  • 지능 로봇은 표현 가능한 사물, 공간을 모델링하기 위해 주변 환경을 인지하고, 자신이 수행할 수 있는 행동을 결합하여 임무를 수행하게 된다. 이를 위해 온톨로지를 사용하여 사물, 공간, 상황 및 행동을 표현하고 특정 임무 수행을 위한 자바 기반 Rule을 통해 다양한 추론 방법을 제공하는 로봇 지식 체계를 사용하였다. 사용된 로봇 지식 체계는 생성되는 인스턴스가 자료의 클래스와 속성 값이 일관성 있고 다른 자료와 모순되지 않음을 보장해 준다. 이러한 로봇 지식 체계를 효율적으로 사용하기 위해서는 완전한 온톨로지 인스턴스의 생성이 밑받침 되어야 한다. 하지만 실제 환경에서 로봇이 Vision Sensor를 통해 사물을 인식할 때 False Positive False Negative와 같은 인식 오류를 발생시키는 문제점이 있다. 이를 보완 하기 위해 본 논문에서는 물체와 물체간의 Spatial Relation, Temporal Relation과 각 물체마다의 인식률 및 속성을 고려하여 물체 인식 오류에서도 안정적으로 인스턴스 관리를 가능하게 하는 Rule 기반의 일식오류 검출 필터를 제안한다.

  • PDF

Design and Implementation of Optimal Smart Home Control System (최적의 스마트 홈 제어 시스템 설계 및 구현)

  • Lee, Hyoung-Ro;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.135-141
    • /
    • 2018
  • In this paper, we describe design and implementation of optimal smart home control system. Recent developments in technologies such as sensors and communication have enabled the Internet of Things to control a wide range of objects, such as light bulbs, socket-outlet, or clothing. Many businesses rely on the launch of collaborative services between them. However, traditional IoT systems often support a single protocol, although data is transmitted across multiple protocols for end-to-end devices. In addition, depending on the manufacturer of the Internet of things, there is a dedicated application and it has a high degree of complexity in registering and controlling different IoT devices for the internet of things. ARIoT system, special marking points and edge extraction techniques are used to detect objects, but there are relatively low deviations depending on the sampling data. The proposed system implements an IoT gateway of object based on OneM2M to compensate for existing problems. It supports diverse protocols of end to end devices and supported them with a single application. In addition, devices were learned by using deep learning in the artificial intelligence field and improved object recognition of existing systems by inference and detection, reducing the deviation of recognition rates.

A Study on the Elevator System Using Real-time Object Detection Technology YOLOv5 (실시간 객체 검출 기술 YOLOv5를 이용한 스마트 엘리베이터 시스템에 관한 연구)

  • Sun-Been Park;Yu-Jeong Jeong;Da-Eun Lee;Tae-Kook Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.103-108
    • /
    • 2024
  • In this paper, a smart elevator system was studied using real-time object detection technology based on YOLO(You only look once)v5. When an external elevator button is pressed, the YOLOv5 model analyzes the camera video to determine whether there are people waiting, and if it determines that there are no people waiting, the button is automatically canceled. The study introduces an effective method of implementing object detection and communication technology through YOLOv5 and MQTT (Message Queuing Telemetry Transport) used in the Internet of Things. And using this, we implemented a smart elevator system that determines in real time whether there are people waiting. The proposed system can play the role of CCTV (closed-circuit television) while reducing unnecessary power consumption. Therefore, the proposed smart elevator system is expected to contribute to safety and security issues.

Design and Implementation of a Real-Time Face Detection System (실시간 얼굴 검출 시스템 설계 및 구현)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.142-145
    • /
    • 2010
  • 본 논문에서는 적외선 조명을 이용한 밝은 동공 효과와 전형적인 외형을 기반으로 한 사물 인식 기술을 결합하여 외부 조명의 간섭으로 밝은 동공 효과가 나타나지 않는 경우에도 견실하게 눈을 검출하고 추적 할 수 있는 방법을 제안한다. 눈 검출과 추적을 위해 SVM과 평균 이동 추적방법을 사용하였고, 적외선 조명과 카메라를 포함한 영상 획득 장치를 구성하여 제안된 방법이 효율적으로 다양한 조명하에서 눈 검출과 추적을 할 수 있음을 보여 주었다.

  • PDF

Object Part Detection-based Manipulation with an Anthropomorphic Robot Hand Via Human Demonstration Augmented Deep Reinforcement Learning (행동 복제 강화학습 및 딥러닝 사물 부분 검출 기술에 기반한 사람형 로봇손의 사물 조작)

  • Oh, Ji Heon;Ryu, Ga Hyun;Park, Na Hyeon;Anazco, Edwin Valarezo;Lopez, Patricio Rivera;Won, Da Seul;Jeong, Jin Gyun;Chang, Yun Jung;Kim, Tae-Seong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.854-857
    • /
    • 2020
  • 최근 사람형(Anthropomorphic)로봇손의 사물조작 지능을 개발하기 위하여 행동복제(Behavior Cloning) Deep Reinforcement Learning(DRL) 연구가 진행중이다. 자유도(Degree of Freedom, DOF)가 높은 사람형 로봇손의 학습 문제점을 개선하기 위하여, 행동 복제를 통한 Human Demonstration Augmented(DA)강화 학습을 통하여 사람처럼 사물을 조작하는 지능을 학습시킬 수 있다. 그러나 사물 조작에 있어, 의미 있는 파지를 위해서는 사물의 특정 부위를 인식하고 파지하는 방법이 필수적이다. 본 연구에서는 딥러닝 YOLO기술을 적용하여 사물의 특정 부위를 인식하고, DA-DRL을 적용하여, 사물의 특정 부분을 파지하는 딥러닝 학습 기술을 제안하고, 2 종 사물(망치 및 칼)의 손잡이 부분을 인식하고 파지하여 검증한다. 본 연구에서 제안하는 학습방법은 사람과 상호작용하거나 도구를 용도에 맞게 사용해야하는 분야에서 유용할 것이다.