• Title/Summary/Keyword: 사면토양

Search Result 345, Processing Time 0.022 seconds

Review on Current Status on Mine Reclamation Policies of 9 Countries represented by International Symposium (광해방지 국제심포지엄 발표사례로 본 국가별 광해 및 복구현황과 정책)

  • Lee, Seung Ah;Yang, In Jae
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.546-552
    • /
    • 2018
  • Although there are differences in the history of mining development by country, geographical conditions, and economic status, there are various problems such as water pollution caused by acid mine drainage from past mine development, soil and water pollution caused by mine tailing, and landslides caused by slope failure. Thus, human life is threatened by ground subsidence caused by collapses. Some countries have technology and legal systems that are different from those of others. In countries where mine reclamation is underway, or has to begin, there is a need for institutional arrangements and technical support. Countries trying to start mine reclamation require help from the international community. Technically and institutionally advanced nations need to recover from mine reclamation through cooperation with countries that are beginning to undertake reclamation.

Characteristics of Roadside Non-point Pollution and Applicability of Reduction Facilities in Paldang Water Source Protection Zone (팔당 상수원 보호구역내 도로비점오염의 특성 및 저감시설의 적용성 연구)

  • Cho, Hye Jin;Song, Meeyoung
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.294-299
    • /
    • 2020
  • Based on the combined results of field surveys and analyses of the road structure and traffic flow, we propose a new plan for reducing roadside non-point pollution in the Paldang Water Source Protection Zone. The results show that the soil surrounding the roads in Paldang is highly permeable, which mitigates the need for filtration facilities. Roads flanked by steep slopes are found to facilitate the reduction of non-point roadside pollution through vegetation and soils along road slopes without the need for pollution reduction facilities. These results highlight the need for a flexible roadside non-point pollution reduction plan for roadside non-point pollution, which can be tailored to compliment relevant regulations and design standards after analyzing the characteristics of the target road.

Prediction of the Suitable Area on Erosion Control Dam by Sediment Discharge in Small Forest Catchments (산림소유역 토사유출량에 의한 사방댐 시공적지 예측기법 개발)

  • Lee, Sung-Jae;Kim, Seon-Jeong;Lee, Eun-Jai;Ma, Ho-Seop
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.438-445
    • /
    • 2020
  • The characteristics of forest environmental factors were analyzed using the quantification theory (I) for prediction of the suitable area of erosion control dams. The results indicated that sediment discharge in small forest catchments was significantly correlated with dredging passage (0.7495) and age class (0.6000). In contrast, area (0.3416), slope gradient (0.3207), rainfall (0.3160), altitude (0.2990) and soil type (0.2192) were poorly correlated. Following quantification theory (I), we developed a selection decision table for erosion control dams based on sediment discharge rate as class I (highly suitable site, greater than 2.2496), class II (suitable site, 1.1248~2.2495), and class III (poorly suited site, lower than 1.1247).

Prediction of Compaction, Strength Characteristics for Reservoir Soil Using Portable Static Cone Penetration Test (휴대용 정적 콘 관입시험을 통한 저수지 제방 토양의 다짐, 강도 특성 및 사면 안정성 예측)

  • Jeon, Jihun;Son, Younghwan;Kim, Taejin;Jo, Sangbeom;Jung, Seungjoo;Heo, Jun;Bong, Taeho;Kim, Donggeun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.1-11
    • /
    • 2023
  • Due to climate change and aging of reservoirs, damage to embankment slopes is increasing. However, the safety diagnosis of the reservoir slope is mainly conducted by visual observation, and the time and economic cost are formidable to apply soil mechanical tests and slope stability analysis. Accordingly, this study presented a predicting method for the compaction and strength characteristics of the reservoir embankment soil using a portable static cone penetration test. The predicted items consisted of dry density, cohesion, and internal friction angle, which are the main factors of slope stability analysis. Portable static cone penetration tests were performed at 19 reservoir sites, and prediction equations were constructed from the correlation between penetration resistance data and test results of soil samples. The predicted dry density and strength parameters showed a correlation with test results between R2 0.40 and 0.93, and it was found to replace the test results well when used as input data for slope stability analysis (R2 0.8134 or more, RMSE 0.0320 or less). In addition, the prediction equations for the minimum safety factor of the slope were presented using the penetration resistance and gradient. As a result of comparing the predicted safety factor with the analysis results, R2 0.5125, RMSE 0.0382 in coarse-grained soil, R2 0.4182 and RMSE 0.0628 in fine-grained soil. The results of this study can be used as a way to improve the existing slope safety diagnosis method, and are expected to be used to predict the characteristics of various soils and inspect slopes.

Strength Characteristics of the Soil Mixed with a Natural Stabilizer (친환경 토양안정재를 혼합한 지반의 강도특성)

  • Kwon, Youngcheul;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • This article aims to find method to mix a harmless hardening agent and soil generated during construction to make paving materials. The main purpose of this research is to get rid of the harmfulness(Chromium (VI), etc.) of cement which has been generally and frequently used as a hardening agent and strengthen it so that it can be used for the general foundation solidification and stabilization of civil engineering/construction structures such as dredging soil treatment, marine structure foundation treatment, surface soil stabilization, and river bank erosion prevention. NSS(Natural Stabilizer Soil) used for this study takes as its chief ingredient the mixture of lime and staple fibers extracted from natural fibers. It increases the shearing strength of soil that it improves the support and durability of the foundation and prevents flooding and frost as well. The pH measured to know its eco-friendliness was 6.67~7.15, and according to the migration testing, only Pb and CN were lower than the standards, so it can be said that NSS has almost no harmful components in it. According to the result of uniaxial strength testing, when the mixture ratio of weathered soil to NSS was 6%, about 1,850kpa strength was expressed. And according to the result of CBR. testing to figure out its appropriateness as a paving material, the CBR of the foundation was 4%~6%. But when the mixture ratio of NSS is over 6%, the water immersion CBR. is over 100%; thus, it is expected that it will show great utility as a paving material.

Habitat Environment of Eleutherococcus senticosus Max. at Mt. Deokyu (덕유산 가시오갈피 자생지의 생육환경)

  • 박문수;김영진;박호기;김선;김규성;장영선
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.6
    • /
    • pp.710-717
    • /
    • 1996
  • To obtain the basic informations on the farm cultivation of Eleutherococcus senticosus Max., field survey of the native habitat in Mt. Deokyu such as weather, soils, vegetation and growth was carried out. The habitat of E. senticosus is situated at 127$^{\circ}$ 45'E, 35$^{\circ}$ 52' N in Mt. Deokyu where the elev-tion ranges from 1,050 to 1,300 meters above the sea level. Mean annual temperature forecasted around the habitat was 5.8$^{\circ}C$, mean maximum temperature in August, 24.6$^{\circ}C$ ; mean minimum temperature in January, -13.5$^{\circ}C$ and relative humidity during the growth periods, over 95%. To divide the area according to climatic conditions was classified cool temperature and humid rain forest zone. In another view, it belonged to deciduous broad-leaf forest zone and soil texture was sandy loam with dark brown gravels. Acidity and P$_2$O$_{5}$ content of soil represented pH 5.2~5.6 and 10ppm, respectively. The growth of E. senticosus was poor under the low light intensity(relative 20% of full sun-light) at the growing place of the habitat and the propagation was conducted by root sucker. The natural vegetation was consisted of big trees, 3 species; shrubs, 8 species and herbs, 4 species.

  • PDF

Spatial Characteristics of Gwangneung Forest Site Based on High Resolution Satellite Images and DEM (고해상도 위성영상과 수치고도모형에 근거한 광릉 산림 관측지의 공간적 특성)

  • Moon Sang-Ki;Park Seung-Hwan;Hong Jinkyu;Kim Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.115-123
    • /
    • 2005
  • Quantitative understanding of spatial characteristics of the study site is a prerequisite to investigate water and carbon cycles in agricultural and forest ecosystems, particularly with complex, heterogeneous landscapes. The spatial characteristics of variables related with topography, vegetation and soil in Gwangneung forest watershed are quantified in this study. To characterize topography, information on elevation, slope and aspect extracted from DEM is analyzed. For vegetation and soil, a land-cover map classified from LANDSAT TM images is used. Four satellite images are selected to represent different seasons (30 June 1999, 4 September 2000, 23 September 2001 and 14 February 2002). As a flux index for CO₂ and water vapor, normalized difference vegetation index (NDVI) is calculated from satellite images for three different grid sizes: MODIS grid (7km x 7km), intensive observation grid (3km x 3km), and unit grid (1km x 1km). Then, these data are analyzed to quantify the spatial scale of heterogeneity based on semivariogram analysis. As expected, the scale of heterogeneity decreases as the grid size decreases and are sensitive to seasonal changes in vegetation. For the two unit grids where the two 40 m flux towers are located, the spatial scale of heterogeneity ranges from 200 to 1,000m, which correspond well to the climatology of the computed tower flux footprint.

Identification of vulnerable region susceptible to soil losses by using the relationship between local slope and drainage area in Choyang creek basin, Yanbian China (중국 연변 조양하 유역의 국부경사와 배수면적의 관계를 이용한 토사유실 우심지역 추출)

  • Kim, Joo-Cheol;Cui, Feng Xue;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.235-246
    • /
    • 2018
  • The main purpose of this study is to suggest a methodology for identifying vulnerable region in Choyang creek basin susceptible to soil losses based on runoff aggregation structure and energy expenditure pattern of natural river basin within the framework of power law distribution. To this end geomorphologic factors of every point in the basin of interest are extracted by using GIS, which define tractive force and stream power as well as drainage area, and then their complementary cumulative distributions are graphically analyzed through fitting them to power law distribution to identify the sensitive points within the basin susceptible to soil losses with respect to scaling regimes of tractive force and stream power. It is observed that the range of vulnerable region by scaling regime of tractive force is much narrower than by scaling regime of stream power. This result seems to be due to the tractive force is a kind of scale dependent factor which does not follow power law distribution and does not adequately reflect energy expenditure pattern of river basins. Therefore, stream power is preferred to be a more reasonable factor for the evaluation of soil losses. The methodology proposed in this study can be validated by visualizing the path of soil losses, which is generated from hill-slope process characterized by local slope, to the valley through fluvial process characterized by drainage area as well as local slope.

Habitat Environment of Epimedium koreanum Nakai (삼지구엽초(三枝九葉草) 자생지(生地生) 환경(環境) 특성(特性))

  • Park, Kyeong-Yeol;Choi, Byoung-Ryourl;Yi, Eun-Sub;Kim, Sun-Jae;Park, Cheol-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.6 no.1
    • /
    • pp.51-56
    • /
    • 1998
  • This study was carried out to evaluate environmental and ecological characteristics of natural habitat for cultivation of Epimedium koreanum. Habitat of E. koreanum was the slope foot of mountain descending gradually toward mostly northwest from top of mountain with slope of $2{\sim}20%$ and the altitude ranged from 60 to 400m above the sea level. Some physiochemical characteristics of habitat soil were as follows: pH, $4.1{\sim}5.8$, organic matters content, $4.9{\sim}6.6%$ and cation exchange capacity, $14.8{\sim}34.3\;me/100g$ soil, respectively. Habitats were shaded by deciduous broad-leaved tree mainly, and compared with those of naked area, relative photon flux density was $3.5{\sim}13.1%$ and relative luminance was $3.3{\sim}11.9%$ due to shading. Air temperature of habitat under shade was $4.3{\sim}6.5^{\circ}C$ lower than that of naked area. Habitat soil temperature was lower than that of naked area but temperature range was smaller than that of naked area. E. koreanum plants were growing with semishading plants under shade of tree leaf. From investigation of natural characteristics of habitat, it was concluded that E. koreanum plant would grow at place with a little change in temperature and moisture of soil which was caused by shading and mulching with litterfall of broad-leaved tree.

  • PDF

Changes of Nitrogen-Fixation Activity and Environmental Factors of Growth in Lespedeza bicolor Turcz (싸리(Lespedeza bicolor Turcz.)의 공생 질소고정활성과 생육환경요인의 변화)

  • 송승달
    • Journal of Plant Biology
    • /
    • v.35 no.4
    • /
    • pp.317-322
    • /
    • 1992
  • The nitrogen fixation activity and environmental factors of Lespedeza bicli!oy Turcz, forming annual root nodules by symbiotic Rhizobium sp. were analyzed in the field conditions during the growing period. Seasunal changes of $N_2-fixation$ activity showed the maximum value of $120\;\mu\textrm{M}\;C_2_H4{\cdot}noduie\;g\;fw^{-1}{\cdot}hr^{-1}$ during the active growing period (June) and varied significantly depending on the growth phase and environmental factors. The maximum activities were attained at the conditions of pH 7, $30^{\circ}C$ of temperature, 18 Kpa of oxygen partial pressure and inhibited by water stress and nitrogen sources. The habitat soil was weak acidic and poor in nitrogen, phosphorus and organic matter contents. The leaf area ratios and chlorophyll contents were ranged from 442 to $48;\textrm{cm}^2{\cdot}g\;dw^{-1}$ and from 33 to $38\;\mu\textrm{g}\;chI{\cdot}\textrm{cm}^2$. Nitrogen contents in each organ showed the maximum of 46, 19 and $11\;mg{\cdot}g\;dw^{-1}, respectively for leaf, rool and stem in the early period. The highest phosphorus contents were 4.2, 1.2 and $0.6\;mg{\cdot}g\;dw^{-1}$, respectively for leaf. root and stem in early growing period. The allocation ratios of nitrogen quantity showed 60% for leaves and 73% for roots during the active and late growth period, and 22% [or stems in average. The allocalion ralios o[ phosphorus quantity showed 58% for leaves during the most productive period, 70% for roots in the pre-growth stage and 26% for stems in average.verage.

  • PDF