• Title/Summary/Keyword: 사면보강

Search Result 312, Processing Time 0.024 seconds

A Stability Analysis of Geosynthetics Reinforced Soil Slopes I. - Slope Stability Analysis Considering Reinforcing Effects - (토목섬유 보강 성토사면의 안정해석 I. - 보강효과를 고려한 사면안정해석 -)

  • Kim Kyeong-Mo;Kim Hong-Taek;Lee Eun-Soo;Kim Young-Yoon;Ahn Kwang-Kuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.95-105
    • /
    • 2005
  • Generally, a modified version of limit equilibrium method can be used to evaluate a slope stability of the geosynthetic reinforced soil slopes. In most cases, resisting effects of geosynthetic reinforcement are dealt with considering an increased shear strength on the potential slip surface. However, it is not clear that the methods satisfy all three equilibrium equations. As we know, the pattern of normal stress distribution along the slip surface is the key factor in calculating the safety factor of slopes. In this study, the new slope stability analysis method in which not only reinforcing effects of geosynthetics can be considered but also all three equilibrium equations can be satisfied was proposed with assuming the normal stress distribution along the slip surface as quadratic curve with horizontal $\chi-coordinate$. A number of illustrative examples, including published slope stability analysis examples for the reinforced and unreinforced soil slopes, loading test of large scale reinforced earth wall and centrifuge model tests on the geotextile reinforced soil slopes, were analyzed. As a result, it is shown that the newly suggested method yields a relatively accurate factor of safety for the reinforced and unreinforced soil slopes.

Slope Stability Analysis Considering Reinforcing Effects of Geosynthetics (토목섬유의 보강효과를 고려한 사면안정해석)

  • Kim, Kyeong-Mo;Kim, Hong-Tack;Lee, Hyung-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 2005
  • Generally, to evaluate a slope stability of the geosynthetic reinforced soil slope, the modified version of limit equilibrium method can be used. In most cases, resisting effects of reinforcement are dealt with considering an increased shear strength on the potential slip surface. However, it is not clear that the methods satisfy all three equilibrium equations. In this study, the new slope stability analysis method in which not only reinforcing effects of geosynthetics can be considered but also all three equilibrium equation can be satisfied is proposed. A number of illustrative examples, including published load test of large-scale reinforced retaining wall and centrifuge model tests on the geotextile reinforced soil slopes, are also analyzed. As a result, it is shown that the newly suggested method produces a relatively accurate factor of safety.

  • PDF

Evaluation of Reinforcing Effects of Pressure-Injected Grouting Nail in Weathered Rock (풍화암 사면에서의 압력분사 그라우팅 네일 보강 효과 연구)

  • Hwang, Young-Cheol;Kim, Nak-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.47-55
    • /
    • 2002
  • The slope reinforcing method utilized in this paper reinforces the ground overall by means of filling borehole as well as permeating grout material into ground by injecting it through the grouting pipe. In order to reflect these characteristics to design, not only the ground reinforcing effect by the structural material itself but also the ground strength improvement effect by the grouting injection must be quantitively evaluated. But precedent research of it has been insufficient. Therefore, the slope reinforcing method was applied to the weathered rockmass slope situated in the highway in order to analyze reinforcing effect and the instrumentation of slope was performed. Through analysis of this field test, the slope reinforcing method was proved to be effective and back analysis method based on instrumentation values of slope was proposed to apply to reinforcing design. In this paper, the effectiveness of reinforcing method was certified through proposed back analysis.

  • PDF

A study on the optimization technique for the plan of slope reinforcement arrangement of soil-nailing in tunnel portal area (터널 갱구사면 쏘일네일링 보강배치계획을 위한 최적화기법 연구)

  • Kim, Byung-Chan;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.569-579
    • /
    • 2016
  • In order to ensure the stability of tunnel portal slope, reinforcement method such as anchors, soil nails and rock bolts have been used in Korea. When selecting slope reinforcement methods in tunnel portal area such as reinforcement arrangement and length, trial and error method can be very time-consuming and it was also not easy to verify the selection of an optimum condition. In this study, using the FISH language embedded in the finite difference code FLAC3D program, the optimization technique was developed with the Differential Evolution Algorithm (DEA). After building a database on the soil nailing method in tunnel portal area, this system can be selected to an optimum arrangement plan based on the factor of safety through the FLAC3D analysis. Through the results of numerical analysis, it was confirmed that the number of analysis was decreased by about 8 times when DEA based optimization technique was used compared to the full combination (FC). In case of the design of slope reinforcement in tunnel portal area, if this built-system is used, it is expected that the selection of an optimum arrangement plan can be relatively easier.

A Study on Seismic Retrofit Design of the Stabilized Piles by 1g Shaking Table Tests and Pseudo-static Analysis (1g 진동대 실험 및 등가정적해석을 이용한 억지말뚝의 사면안정 내진보강 효과 연구)

  • Han, Jin-Tae;Cho, Jong-Suck;Yoo, Min-Taek;Lee, Seung-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.93-101
    • /
    • 2011
  • Korea has about 70% of its land classified as the mountain area, which has led to cut-slope being the result of substantial road and railway construction. However, there is currently a lack of research about the seismic retrofit design of a slope, even though many earthquakes have recently occurred at home and abroad. In this study, in order to investigate the stabilizing effect of piles against sliding during an earthquake, a series of 1 g shaking table tests and pseudo-static analyses were carried out. As a result, the stabilizing effect of piles against sliding during an earthquake was verified by the 1 g shaking table tests and the most effective result from the pseudo-static analyses was that the installation of the piles on the central part of the slope, where the failure surface included piles unlike the lower part and upper part of the slope. Furthermore, when the pile was installed on the central part of the slope, the change of the safety factor depending on the distance between the center of two piles was evaluated.

A Case Study of Extra Reinforcement by Road Extension work on Existing Cut Slope Reinforced with Counterweight Fill and Stabilizing Piles (압성토 및 억지말뚝으로 보강된 도로의 확장공사로 인한 추가 보강사례 연구)

  • Park, Jeong-Yong;Kim, Woo-Seong;Kim, Jae-Kyoung;Yang, Tae-Sun;Na, Kyung-Joon
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.2
    • /
    • pp.67-72
    • /
    • 2008
  • To confirm the stability of a cut slope in the road extension construction site, several investigations were carried out and countermeasures of slope was studied. This paper describes a study of design case of extra reinforcement on existing cut slope reinforced by preloading and piles in roads. To investigate the effect of stabilizing piles installed in a cut slope, an instrumentation system also designed, was. As a result that the stabilizing file and earth anchor are considered as the extra reinforcement, both stabilizing pile and earth anchor guarantee the stability of cut slope. However, stabilizing pile is selected in aspects of economy and continuity to the existing cut slop reinforcement including counterweight fill and stabilizing piles.

  • PDF

Applicability Study of Geotextile Mesh Soil Nail on Slope Reinforcement Using Numerical Analysis (수치해석을 이용한 토목섬유망 네일의 사면보강에 대한 적용성 연구)

  • You, Kwang Ho;Jung, Yeun Hak;Ha, Ji Young
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.264-274
    • /
    • 2015
  • In this study, the applicability of geotextile mesh soil nails on slopes was evaluated by numerical analysis to reduce environmental problems which a general soil nailing might produce and to improve its economical efficiency and construction convenience. To this end, in situ pull-out tests were conducted for both general soil nail and geotextile mesh soil nail and their pull-out characteristics were analyzed. Also, finite difference method was used to verify the suitability of numerical simulation. Parameters for nail and ground conditions were selected and sensitivity analysis was performed for the evaluation of slope stability. In addition, analysis was performed by limit equilibrium method which is widely used for slope stability analysis in practice. As a result, if the nail diameter was same, there is no big difference between geotextile mesh soil nails and general soil nails in terms of slope stability. Therefore it can be expected that geotextile mesh soil nails could be effective for slope reinforcement since they could keep a slope as stable as general soil nails and give better economical efficiency and construction convenience than general soil nails.

Effect of Pore Water Pressure on Slope Stability by Using Coupled Finite Element Analysis (연계해석(Coupled Analysis)에 의한 간극수압이 사면안정에 미치는 영향)

  • Shin, Jong-Ho;Kim, Hak-Moon;Jang, Kyung-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.25-35
    • /
    • 2009
  • Slope failures are one of the significant disasters which causes lots of human casualties and huge financial losses every year. Previous researches on the slope failure have indicated that most accidents are closely related to the pore water pressure in the slope due to rainfall during the rainy seasons or stormy weather conditions. It would be therefore appropriate to consider the effect of pore water pressure in the design of slopes. As the existing slopes are generally reinforced by plants and other slope protecting measures, their boundary conditions are highly complicated. In this paper an attempt to develop a new modeling and analysis technique of slopes is proposed by including pore water pressure and adopting the coupled finite element method. Non-reinforced and reinforced slope models are considered. Representative analysis showed that the numerical modeling considering pore water pressure is appropriate in slope stability analysis. Flow behavior in the slopes is identified for various hydraulic boundary conditions. It is also shown that the effect of pore water pressure on slope stability is significant.

A Study of Slope Stability Analysis and Reinforcement on Colluvial Soil Slope in Hyusok, Danyang (붕적토 사면의 안정성 해석과 보강 대책에 관한 연구 - 단양군 휴석동 붕괴사면을 중심으로-)

  • 구호본;이종현;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.43-50
    • /
    • 2000
  • 충북단양군 영춘면 휴석동 지역에 위치한 위험사면은 1972년 456mm의 집중강우에 의해 사면붕괴가 발생하여 가옥 2채붕괴 등의 피해를 유발시켰으며, 지속적인 지반침하가 진행되고 있다. 남한강 하류에 접하고 있는 상기의 위험사면은 산사태에 의한 토사의 이동시 남한강을 덮치게 되어 그 유로의 변화를 일으켜 영춘면의 지역의 침수피해의 대규모의 재해를 일으킬 수 있는 위험성이 내재되어 있다. 본 연구는 상기 위험사면에 대한 지반조사, 지하수 특성 조사 등을 통해 붕적토 사면의 안정해석을 수행하여 최적의 조강 대책안을 제시하고 이에 따른 재해 예방을 도모하고자 한다. 보강대책을 붕적토 사면의 거동특성과 위험사면의 지형적 특성 등을 고려하여 집수정, 수평배수공, 앵커공 및 보강토 옹벽의 복합공법에 의해 위험사면의 안정성을 확보하는 방안을 제안하였다.

  • PDF

Development of a Computer Program to Analyze Stability of Slopes Reinforced by the Earth Retention System (활동억지시스템으로 보강된 사면의 안정해석 프로그램 개발)

  • Hong Won-Pyo;Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.45-58
    • /
    • 2006
  • A new computer program SLOPILE(Ver 3.0) is developed to analyze stability of slopes containing an earth retention system composing of piles, nails and anchors. SLOPILE(Ver 3.0) can calculate the slope stability for both planar failure surfaces in infinite slopes and arc failure surfaces. In order to investigate a design adaptability of SLOPILE(Ver 3.0), analysis results of TALREN and SLOPE/W programs are compared with that of SLOPILE(Ver 3.0). SLOPILE(Ver 3.0) can calculate the slopes reinforced by earth retention system such as piles, nails and anchors. But, TALREN and SLOPE/W can not calculate the slope reinforced by piles. As a analysis result of the example case, SLOPILE(Ver 3.0) is accuracy and suitable program for the stability analysis of slopes reinforced by earth retention system. Therefore, SLOPILE(Ver 3.0) is the most suitable program to analyze the slope reinforced by the earth retention system.