사례기반 추론은 과거의 사례를 기반으로 새로운 사례에 대한 답을 제시하는 기계학습의 한 분야이다. 과거의 사례는 일정한 형식으로 사례 베이스에 저장되는데, 저장의 형식을 결정하는 것이 속성이다. 속성은 사례의 특징을 가장 잘 표현할 수 있는 것들로 구성되며, 속성값간의 유사도 도출을 통해서 유사 사례를 검색하게 된다. 따라서, 사례기반 추론은 사용되는 속성에 따라서 성능이 달라지게 된다 본 연구에서는 먼저 속성을 하나씩만 사용하여 사례기반 추론을 수행하여 각 속성의 선택효과를 측정하고, 하나씩만 제거하고 사례기반 추론을 수행하여 각 속성의 제거효과를 측정하였다. 이 측정치들을 근거로 속성의 부분집합을 구성하여 사례기반 추론을 구현한 결과, 속성을 전부 사용했을 때보다 성능과 효율성이 우수한 사례기반 추론 시스템을 구축할 수 있었다.
Semantic Web은 웹 상에 존재하는 정보들을 사람뿐만 아니라 컴퓨터 프로그램과 같은 기계들이 이해할 수 있도록 만들어진 차세대 웹이다. 이러한 Semantic Web을 수행하기 위해서는 Ontology가 가지고 있는 사실과 규칙들의 의미를 컴퓨터가 자동적으로 이해하기 위한 추론기술이 필요하다. 본 논문에서는 이러한 Semantic Web 환경에서 Ontology와 연계한 사례기반 추론 시스템을 제안한다. 사례기반 추론 시스템은 사례베이스로부터 현재 사례와 가장 유사한 사례를 검색하여 그 해결책을 제시하는 추론 방법으로 검색시 빠른 해결책을 제시한다는 장점을 가지고 있다. 본 논문에서 제안하는 시맨틱 웹 기반의 온톨로지를 이용한 사례기반 추론시스템은 사용자의 요구사항을 의미적으로 정확하게 판단 할 수 있고, 검색 시 효율적인 알고리즘을 수행하여, 검색 성능 향상을 도모하였다.
본 연구에서는 진단분야에서의 시스템의 성능을 향상시키고 최적의 해를 찾고자 사례기반추론과 인공 신경망을 혼합한 시스템을 제안한다. 사례기반추론은 과거의 사례(경험)를 통해 현재의 제시된 문제를 해결하는 추론방식으로, 지식이 획득이 덜 복잡하고, 정형화되기 어려운 규칙이나 문제영역이 불분명한 분야에 효율적으로 활용되었다. 그러나 사례의 양이 방대해야 효율적인 추론을 할 수 있으며, 검색된 시간 또한 지연되는 단점이 있다. 이러한 문제를 보완하고자 본 논문에서는 인공 신경망의 학습을 통해 저장된 ANN Library를 생성하여, 사례기반추론에서의 부적절한 해를 유추하는 것을 방지하고, 효율적이고 신뢰성이 높은 해를 유추해 내는데 목적이 있다.
사례기반추론(Case-Based Reasoning)은 다양한 예측 문제에 있어서 성공적으로 활용되고 있는 데이터마이닝 기법 중 하나이다. 사례기반추론 시스템의 예측 성능은 예측에 사용되는 최근접이웃(Nearest Neighbor)을 어떻게 설정하느냐에 따라 영향을 받게 된다. 따라서 최근접 이웃을 결정짓는 k 값의 설정은 성공적인 사례기반추론 시스템을 구축하기 위한 중요 요인 중 하나가 된다. 최근접 이웃의 설정에 있어서 대부분의 선행 연구들은 고정된 k 값을 사용하는 사례기반추론 시스템은 k 값을 크게 설정할 경우 최근접 이웃 안에 주어진 오류를 일으킬 수 있으며, k 값이 작게 설정된 경우에는 유사 사례 중 일부만을 예측에 사용하기 때문에 예측 결과의 왜곡을 초래할 수 있다. 본 이웃을 결정함에 있어서 Similarity Threshold를 이용하는 s-NN 방법을 제안하였다. 본 연구의 실험을 위해 UCI(University of california, Irvine) Machine Learning Repository에서 제공하는 두 개의 신용 데이터 셋을 사용하였으며, 실험 결과 s-NN 적용한 CBR 모델이 고정된 k 값을 적용한 전통적인 CBR 모델보다 더 우수한 성능을 보여주었다.
본 논문에서는 진단시스템의 추론성능을 향상시키기 위한 방법으로서, 사례 기반 추론을 통해서 규칙 기반 추론의 단점을 보완하여 성능을 향상시키는 혼합형 추론 모델을 제안한다. 본 모델의 특징은 규칙 기반 추론의 확장성 문제와 규칙화 할 수 없는 예외적인 상황에 대한 문제점을 사례 기반 추론에서 사례로 저장하여 규칙 기반 추론의 단점을 보완하는데 있다. 이런 두 모델의 문제점을 해결하는 과정은 첫째로, 문제에 따라 규칙기반추론 모듈의 베이스를 통해서 적절한 규칙을 적용 후 추론을 적용하여 근접한 해를 얻어낸다. 두 번째로, 규칙베이스에 저장되어 있지 않은 문제에 대해서는 사례 라이브러리를 검색하고 유사성 검사를 통해서 저장된 사례를 찾아 입력된 사례에 적용하여 문제를 해결한다. 셋째로, 해결된 문제에 대해서 수정작업을 통해 사례 라이브러리를 확장한다. 이와 같이 세 과정을 통해 본 논문에서 제안하는 방법론의 성과를 측정하기 위하여 정비 메뉴얼을 규칙화하여 규칙베이스를 구축하였고 전문가들의 경험적인 지식에 대해서는 사례라이브러리로 구축하였다. 또한 지식베이스를 통해서 진단을 수행하고 해결된 문제에 대해서 정확도 검사를 통해 진단의 정확성을 측정하여 혼합형추론엔진의 성능을 검증하였다.
현재 진행중인 정보화의 추세 속에서 도시계획 과정에서의 의사결정을 지원하기 위해 다양한 지식기반 공간분석 시스템이 개발되었으나 비구조화된 도시계획 문제의 특성으로 인해 그 적용이 어렵다. 이같은 문제의 해결을 위해 본 연구에서는 사례기반 추론에 의한 공간분석 시스템을 개발하고 이를 택지개발사업시 토지이용계획 과정에 도입하여 그 활용 가능성을 탐색해 보았다. 사례연구를 통한 실험의 결과, 개발된 공간분석 시스템의 적용 가능성이 확인되었다. 그러나 보다 충분한 양의, 건전한 내용의 사례 축적이 병행된다면 더욱 효과적인 추론을 수행할 수 있을 것이다.
사례 기반 추론(case-based reasoning)은 과거에 유사하게 수행된 적이 있는 사레를 유추하고, 유추된 사례의 해를 이용하여 현재의 문계를 해결하는 기법으로서 규칙 기반 추론과 함께 여러 분야에 이용되고 있다. 하지만 사례기반 추론시 사레베이스로부터의 유사성에 근거한 검색을 해야 하므로 사례베이스의 크기가 증가하게 되면 검색시간이 길어지게 되거나 적절하지 못한 사레가 조회될 수 있다 특히 사레베이스 내의 모든 사례에 대하여 유사도를 계산하게 되기 때문에 수행속도가 현저히 저하되는 문제점을 지니고 있다. 본 논문에서는 규칙 및 퍼지 클러스터링에 의한 사레기반추론을 이용한 E-FFIS(Enhanced-Fire Fighting Intelligent System)를 제안한다. 제안하는 시스템은 기존의 H-FFIS(Hybrid-Fire fighting Intelligent System)와 비교해 보았을 때 수행시간을 감소시키면서 정확성을 높이게 되었다.
사출금형 공정계획이란 금형설계를 완료한 후에 설계된 금형을 경제적, 효율적으로 생산하기 위하여 수행해야 할 제조공정에 대한 계획이다. 이러한 공정계획은 전문가의 경험에 의존함은 물론 많은 시간이 소요된다. 그리고 사출금형 공정계획은 현장경험을 토대로 완전 수작업에 의존하고 있으므로 공정계획전문가의 경험과 숙련 등에 따른 변동, 공정설계용 데이터의 부정확 등에 의한 공정계획 그 자체가 갖고 있는 부정확도에 따라 많은 문제점이 있다. 이러한 문제점과 함께 공정계획 전문가의 부족현상, CAD/CAM시스템의 보급 및 생산형태의 다품종소량화 현상에 따라 공정계획의 자동화가 필요하게 되었다. 본 논문에서는 사출금형 공정계획을 자동화하기 위해 사례기반추론(Case Based Reasoning)을 이용하였다. 사출금형의 공정계획은 성형품의 종류에 따라 다양하고 복잡하기 때문에 지식으로서 접근하는데는 한계가 있었다 그래서 본 논문에서는 전문가들의 경험지식을 이용한 사례기반추론을 이용한 공정계획시스템인 IIMPPS(Intelligent Injection Mold Process Planning System)를 개발하였다. 사례기반추론 공정계획 시스템을 개발하기 위해 과거 공정계획을 적합한 사례로서 표현 및 구성하고, 적절한 공정계획을 수립하기 위한 사례의 검색 및 조정방법을 제안하였다. 본 시스템은 차후에 가상생산 에이전트(최형림 등, 2000) 중에서 공정계획 에이전트의 엔진으로서 역할을 수행할 것이다.
본 논문에서는 선박에서 화재탐지를 위해서 규칙 기반 추론과 사례 기반 추론을 통합하는 방법에 대해서 논의하였다. 규칙은 어떤 영역에서 광범위한 경향을 표현하는데 적합하며 사례는 규칙에서 예외적인 상황을 다루는데 적합하다는 점에서 규칙과 사례는 상호 보완적이라 할 수 있다. 즉 어떤 행동이 충분히 반복되면 자연스럽게 규칙이 되며, 잘 확립된 규칙이 있다면 사례를 먼저 추론할 필요가 없다. 그러나 규칙이 실패하게 되면 실패를 만회하기 위해서 사례를 생성하는 것이 하나의 대안이 될 수 있다. 본 논문에서는 일반적인 화재탐지 지식은 규칙으로 표현하고, 예외적인 화재탐지 지식은 사례로 표현함으로써 규칙과 사례가 서로 보완적인 역할을 할 수 있는 통합 방법을 제안하였다. 또한 기존의 규칙 기반 FFES(Fire Fighting Expert System)와 사례기반 추론에 의해 확장된 C-FFES(Combined-Fire Fighting Expert System)를 비교를 통해, 제안한 접근 방법이 화재 탐지율을 향상시킴을 보였다.
설비에 고장이 발생하여 고객이 수리를 요청하기 전에 미리 고객을 방문하여 예방점검을 실시하는 것은 고객의 만족도를 높이고 수리기술자의 효과적인 활용을 위해서 매우 중요한 활동이다. 본 연구에서는 설비에 고장이 발생하여 수리가 이루어진 후에 그 설비의 다음 고장은 언제 발생할 것인가를 예측하기 위하여 사례기반 추론을 적용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.