• Title/Summary/Keyword: 사고심각도 예측모형

Search Result 29, Processing Time 0.019 seconds

A Study to Predict the Traffic Accident Severity Level Applying Neural Network at the Signalized Intersections (인공신경망을 적용한 신호교차로 교통사고심각도 예측에 관한 연구)

  • Choi, Jae-Won;Kim, Seong-Ho;Cho, Jun-Han;Kim, Won-Chul
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.127-135
    • /
    • 2004
  • 교차로 안전성 진단과 관련된 기존의 연구는 교차로 상에서 발생한 사고 자료에 기초하여 교차로 기하구조 요소, 교통량 및 신호운영방법 등과 관련된 요인을 변수로 사용하여 교통사고건수 예측모형 개발에 관한 연구가 대부분이다. 그러나, 분석하고자 하는 대상 교차로의 사고건수 예측모형을 개발하기 위해 필요한 교통사고 자료의 경우 단 기일에 걸쳐 획득되지 않으며 몇 년간의 사고 자료를 요구할 수도 있다. 이러한 자료를 이용하더라도 사고 발생 기간동안 교차로 사고에 영향을 미치는 요인(교차로 운영방법, 기하구조 등)이 변화될 수도 있다는 문제점을 지닌다. 이와 같은 이유로 교차로 안전성을 진단하는데 있어 기존 교통사고 자료는 언제나 절대적인 자료가 될 수 없다. 이에 대한 보완책으로, 3일에서 5일정도의 조사 자료만으로도 안전성 진단이 가능한 상충자료를 이용하여 교차로 안전성 진단을 할 수 있다. 본 연구는 기존사고 자료를 이용하여 사고 발생에 기인하는 여러 변수들을 교통사고심각도와의 상관관계를 분석하고, 상관관계가 높은 변수를 이용하여 신경망 사고심각도 예측모형을 개발하였으며, 모형 검증을 위해 다중회귀사고심각도 예측모형을 개발하여 비교 평가한 결과 신경망 사고심각도 예측모형의 예측력이 우수한 것으로 나타났다. 현장에서 조사된 상충자료를 신경망 사고심각도 예측모형에 적용하여 상충이 사고로 연결 될 경우 사고심각도를 예측하였으며, 예측된 사고심각도에 가중치를 부여하여 대상 교차로 위험우선순위를 결정한 결과 사고비용에 기초한 위험우선순위 결정법과 같은 순위의 결과를 도출하였다.

Predicting of the Severity of Car Traffic Accidents on a Highway Using Light Gradient Boosting Model (LightGBM 알고리즘을 활용한 고속도로 교통사고심각도 예측모델 구축)

  • Lee, Hyun-Mi;Jeon, Gyo-Seok;Jang, Jeong-Ah
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1123-1130
    • /
    • 2020
  • This study aims to classify the severity in car crashes using five classification learning models. The dataset used in this study contains 21,013 vehicle crashes, obtained from Korea Expressway Corporation, between the year of 2015-2017 and the LightGBM(Light Gradient Boosting Model) performed well with the highest accuracy. LightGBM, the number of involved vehicles, type of accident, incident location, incident lane type, types of accidents, types of vehicles involved in accidents were shown as priority factors. Based on the results of this model, the establishment of a management strategy for response of highway traffic accident should be presented through a consistent prediction process of accident severity level. This study identifies applicability of Machine Learning Models for Predicting of the Severity of Car Traffic Accidents on a Highway and suggests that various machine learning techniques based on big data that can be used in the future.

A Study on the Application of Accident Severity Prediction Model (교통사고 심각도 예측 모형의 활용방안에 관한 연구 (서해안 고속도로를 중심으로))

  • Won, Min-Su;Lee, Gyeo-Ra;O, Cheol;Gang, Gyeong-U
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.167-173
    • /
    • 2009
  • It is important to study on the traffic accident severity reduction because traffic accident is an issue that is directly related to human life. Therefore, this research developed countermeasure to reduce traffic accident severity considering various factors that affect the accident severity. This research developed the Accident Severity Prediction Model using the collected accident data from Seohaean Expressway in 2004~2006. Through this model, we can find the influence factors and methodology to reduce accident severity. The results show that speed limit violation, vehicle defects, vehicle to vehicle accident, vehicle to person accident, traffic volume, curve radius CV(Coefficient of variation) and vertical slope CV were selected to compose the accident severity model. These are certain causes of the severe accident. The accidents by these certain causes present specific sections of Seohaean Expressway. The results indicate that we can prevent severe accidents by providing selected traffic information and facilities to drivers at specific sections of the Expressway.

Classifying Severity of Senior Driver Accidents In Capital Regions Based on Machine Learning Algorithms (머신러닝 기반의 수도권 지역 고령운전자 차대사람 사고심각도 분류 연구)

  • Kim, Seunghoon;Lym, Youngbin;Kim, Ki-Jung
    • Journal of Digital Convergence
    • /
    • v.19 no.4
    • /
    • pp.25-31
    • /
    • 2021
  • Moving toward an aged society, traffic accidents involving elderly drivers have also attracted broader public attention. A rapid increase of senior involvement in crashes calls for developing appropriate crash-severity prediction models specific to senior drivers. In that regard, this study leverages machine learning (ML) algorithms so as to predict the severity of vehicle-pedestrian collisions induced by elderly drivers. Specifically, four ML algorithms (i.e., Logistic model, K-nearest Neighbor (KNN), Random Forest (RF), and Support Vector Machine (SVM)) have been developed and compared. Our results show that Logistic model and SVM have outperformed their rivals in terms of the overall prediction accuracy, while precision measure exhibits in favor of RF. We also clarify that driver education and technology development would be effective countermeasures against severity risks of senior driver-induced collisions. These allow us to support informed decision making for policymakers to enhance public safety.

Analysis on Comparison of Highway Accident Severity between Weekday and Weekend using Structural Equation Model (구조방정식 모형을 이용한 주중과 주말의 고속도로 사고심각도 비교분석)

  • Bae, Yun Kyung;Ahn, Sunyoung;Chung, Jin-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2483-2491
    • /
    • 2013
  • In order to identify and understand the crucial factors to induce traffic accident, causal relationships between diverse factors and traffic accident occurrence have been investigated continuously. It is one of most important issues all over the world to reduce the number of traffic accidents and deaths by them. Korea government is also stepping up their effort to reduce the number of traffic accidents and mitigate the severity of the accidents by establishing various traffic safety strategies. By introducing the five-day work week and increasing concern of leisure activities, the differences of trip characteristics between weekday and weekend is getting greater. According to this, the patterns and crucial factors of traffic accident occurrence in weekend appear differently from those in weekday. This study aims to understand major different factors affecting accident severity between weekday and weekend using 12,042 incident data occurred on freeways of Korea from 2006 to 2011. The model developed in this study estimated relationships among various exogenous factors of traffic accident by each type using SEM(Structural Equation Model). The result provides that road factors are related to the accident severity for weekday model, while environment factors affects on accident severity for weekend.

Development of Traffic Accident Forecasting Model for Signalized Intersections - Focusing National Highway in Kyonggi Province - (신호교차로 교통사고 예측모형 개발 - 경기도 일반국도 중심으로 -)

  • O, Il-Seok;Kim, Seong-Su;Sin, Chi-Hyeon
    • Proceedings of the KOR-KST Conference
    • /
    • 2007.11a
    • /
    • pp.315-322
    • /
    • 2007
  • 신호교차로 교통사고는 90년대 이후 도시가 발달하고 산업이 고도화됨에 따라 교통 혼잡 문제와 함께 심각한 사회문제로 대두되고 있다. 특히 신호교차로의 교통사고는 인적요인, 차량요인, 환경적 요인 등이 복합적으로 작용하여 발생하는데, 교통량의 집중과 도로의 기하구조, 운전자 과실 등이 교통사고의 주요 인자로 작용하고 있다. 본 연구에서 교통사고 예측모형을 개발하기 위해서 2003년부터 2006년도까지 실제 경기도의 신호교차로에서 발생한 교통사고자료를 기초로 하였다. 구체적으로는 시내가 아닌 지방부 성격을 지닌 일반국도를 대상으로 하였다. 지방부 일반국도의 신호교차로 교통사고 분석에 단순통계분석과 다중회귀분석을 사용하였다. 사고와 관계가 높은 신호주기, 방향별 접근 교통량, 회전교통량 둥과 같은 도로, 교통, 운영조건들로 변수를 정하여 교통사고 예측모형을 도출하였다. 본 연구에서는 도로조건, 교통조건, 운영조건들과 사고와의 관계를 이용하여 경기도 일반국도의 신호교차로 교통사고예측모형을 개발하였고, 이는 지방부 성격을 지닌 교차로에 적용이 가능하다고 판단된다.

  • PDF

Data Mining for Road Traffic Accident Type Classification (데이터 마이닝을 이용한 교통사고 심각도 분류분석)

  • 손소영;신형원
    • Journal of Korean Society of Transportation
    • /
    • v.16 no.4
    • /
    • pp.187-194
    • /
    • 1998
  • 본 연구는 교통사고 심각도와 관련된 중요변수를 찾고 이들 변수를 바탕으로 신경망, Decision Tree, 로지스틱 회귀분석을 이용하여 사고 심각도 분류 예측모형을 추정하였다. 다수의 범주형 변수로 이루어진 교통사고 통계원표상의 설명변수 들로부터 사고 심각도 변화에 영향력 있는 변수 선택을 위하여 독립성 검정을 위한 $x^2$ test와 Decision Tree를 이용하였고, 선택된 변수들은 신경망과 로지스틱 회귀분석의 기초로 이용되었다. 분석결과 세가지기법간에 분류정확도에는 유의한 차이가 없는 것으로 나타났다. 그러나 Decision Tree가 설명변수 선택능력과 분석수행시간, 사고 심각도 결정요인 식별의 용이함 측면에서 범주형 종속변수인 사고 심각도의 분석에 적합한 것으로 보이며 사고 심각도에는 보호장구가 가장 큰 영향을 미치는 것으로 재입증되었다.

  • PDF

Data Mining for Road Traffic Accident Type Classification (데이터 마이닝을 이용한 교통사고 심각도 분류분석)

  • 손소영
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10a
    • /
    • pp.373-381
    • /
    • 1998
  • 본 연구는 교통사고 심각도와 관련된 중요변수를 찾고 이들 변수를 바탕으로 신경망, Decision Tree, 로지스틱 회귀분석을 이용하여 사고 심각도 분류 예측모형을 추정하였다. 다수의 범주형 변수로 이루어진 교통사고 통계원표상의 설명변수 들로부터 사고 심각도변화에 영향력 있는 변수선택을 위하여 $X^2$ 독립성 검정과 Decision Tree를 이용하였고, 선택된 변수들은 신경망과 로지스틱 회귀분석의 기초로 이용되었다. 분석결과 세가지기법간에 분류정확도에는 유의한 차이가 없는 것으로 나타났다. 그러나 decision Tree가 설명변수 선택능력과 분석수행시간, 사고 심각도 결정요인 식별의 용이함 측면에서 범주형 종속변수인 사고 심각도의 분석에 적합합 것으로 보이며 사고 심각도에는 보호장구가 가장 큰 영향을 미치는 것으로 재입증되었다.

  • PDF

Classification and Prediction of Highway Accident Characteristics Using Vehicle Black Box Data (블랙박스 영상 기반 고속도로 사고유형 분류 및 사고 심각도 예측 평가)

  • Junhan Cho;Sungjun Lee;Seongmin Park;Juneyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.132-145
    • /
    • 2022
  • This study was based on the black box images of traffic accidents on highways, cluster analysis and prediction model comparisons were carried out. As analysis data, vehicle driving behavior and road surface conditions that can grasp road and traffic conditions just before the accident were used as explanatory variables. Considering that traffic accident data is affected by many factors, cluster analysis reflecting data heterogeneity is used. Each cluster classified by cluster analysis was divided based on the ratio of the severity level of the accident, and then an accident prediction evaluation was performed. As a result of applying the Logit model, the accident prediction model showed excellent predictive ability when classifying groups by cluster analysis and predicting them rather than analyzing the entire data. It is judged that it is more effective to predict accidents by reflecting the characteristics of accidents by group and the severity of accidents. In addition, it was found that a collision accident during stopping such as a secondary accident and a side collision accident during lane change act as important driving behavior variables.

Prediction of Severities of Rental Car Traffic Accidents using Naive Bayes Big Data Classifier (나이브 베이즈 빅데이터 분류기를 이용한 렌터카 교통사고 심각도 예측)

  • Jeong, Harim;Kim, Honghoi;Park, Sangmin;Han, Eum;Kim, Kyung Hyun;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.1-12
    • /
    • 2017
  • Traffic accidents are caused by a combination of human factors, vehicle factors, and environmental factors. In the case of traffic accidents where rental cars are involved, the possibility and the severity of traffic accidents are expected to be different from those of other traffic accidents due to the unfamiliar environment of the driver. In this study, we developed a model to forecast the severity of rental car accidents by using Naive Bayes classifier for Busan, Gangneung, and Jeju city. In addition, we compared the prediction accuracy performance of two models where one model uses the variables of which statistical significance were verified in a prior study and another model uses the entire available variables. As a result of the comparison, it is shown that the prediction accuracy is higher when using the variables with statistical significance.