Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.466-468
/
2005
신문기사를 대상으로 사건 단위로 문서를 클러스터링 하기 위해서, 기존의 연구에서는 기사의 발행일 또는 기사의 내용만 사용하여 하나의 사건을 다른 사건과 구분하는 방법을 사용해 오고 있다. 하지만 사건의 전개가 시간 차이를 두고 진행되는 경우 또는 비슷한 시간대에 같은 범주에 속하는 사건이 발생하는 경우 기사의 발행일만 사용하여 사건 관련 기사를 구분하는 것은 한계가 있다. 본 연구에서는 한국어 신문기사를 대상으로 신문기사에 나타난 시간정보를 자동 추출하고, 이를 기사의 발행일을 기준으로 정규화 한 후 사용하여 사건단위로 기사를 클러스터링 하는 방법을 개발하였다. 즉 한국어 신문 기사를 대상으로 기사에 나타난 시간 표현을 자동으로 추출한 후, 사건과의 유사도 비교에 사용함으로써 사건 단위 클러스터링의 정확도를 높이기 위한 방법을 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2014.04a
/
pp.798-801
/
2014
문서에서 공간 개체와 사건을 찾아내고, 이들 간의 위상적 관계나 의미적 관계를 찾아내는 것을 공간정보 추출이라고 한다. 본 논문에서는 언어분석 결과와 세종사전을 활용해 자연언어 문서에서 동작(motion) 사건 관계 중심의 공간 정보를 추출하는 규칙 기반 시스템을 제안하였다. 수동으로 구축한 20문장의 평가 집합에 대해 사건 관계 추출은 27.45%의 F-measure 성능을 보였다. 공간보다 비교적 많은 연구가 진행된 시간 관계 추출에 대한 최신 연구의 성능이 30~35% 수준[1]인 것을 고려하여 볼 때, 본 연구는 공간 사건 관계 추출의 기초 연구로 의미가 있다.
KIPS Transactions on Software and Data Engineering
/
v.1
no.1
/
pp.69-74
/
2012
Many internet users attempt to focus on the issues which have posted on social network services in a very short time. When some social big issue or event occurred, it will affect the number of comments and retweet on that day in twitter. In this paper, we propose the method of extracting core events based on timeline analysis, sentiment feature and retweet information in twitter data. To validate our method, we have compared the methods using only the frequency of words, word frequency with sentiment analysis, using only chi-square method and using sentiment analysis with chi-square method. For justification of the proposed approach, we have evaluated accuracy of correct answers in top 10 results. The proposed method achieved 94.9% performance. The experimental results show that the proposed method is effective for extracting core events in twitter corpus.
본고에서는 소셜 빅데이터에서 공공안전에 위협되고 사회적으로 이슈가 되는 재난사건을 추출하기 위한 방법으로 소셜 네트워크상에서 사용자 행동 분석과 시간분석을 반영한 토픽 모델링 기법을 알아본다. 소셜 사용자의 글 수, 리트윗 반응, 활동주기, 팔로워 수, 팔로잉 수 등 사용자의 행동 분석을 통하여 활동적이고 신뢰성 있는 사용자를 분류함으로써 트윗에서 스팸성과 광고성을 제외하고 이슈에 대해 신뢰성 높은 사용자가 쓴 트윗을 중요하게 반영한다. 또한, 트위터 데이터에서 새로운 이슈가 발생한 것을 탐지하기 위해 시간별 핵심어휘 빈도의 분포 변화를 측정하고, 이슈 트윗에 대해 감성 표현 분석을 통해 핵심이슈에 대해 사건 어휘를 추출한다. 소셜 빅데이터의 특성상 같은 날짜에 여러 이슈에 대한 트윗이 많이 생성될 수 있기 때문에, 트윗들을 토픽별로 그룹핑하는 것이 필요하므로, 최근 많이 사용되고 있는 LDA 토픽모델링 기법에 시간 특성과 사용자 특성을 분석한 시간상에서의 중요한 사건 어휘를 반영하고, 해당이슈에 대한 신뢰성 있는 사용자가 쓴 트윗을 중요시 반영하도록 토픽모델링 기법을 개선한 소셜 사건 탐지 방법에 대해 알아본다.
Proceedings of the Korea Information Processing Society Conference
/
2012.11a
/
pp.608-611
/
2012
소셜 사건이 일어나면 그 사건과 관련된 트윗이 폭발적으로 증가하는데 트윗 일부 내용을 살펴보면 스팸, 광고와 같은 트윗이 많이 포함되어 있다. 수 많은 트위터 데이터에서 사용자가 사건과 직접 관련된 신뢰성 높은 트윗을 찾아 읽는데 시간이 많이 걸릴 수 있다. 이러한 문제를 해결하기 위해 본 논문에서 트위터의 리트윗 정보, 사용자 신뢰도 측정 및 활동 분석, 팔로잉과 팔로워간의 정보 등 사용자의 행동 분석을 이용하여 소셜 사건과 직접 관련된 신뢰성 높은 사용자의 트윗을 추출하는 방법을 제안한다. 제안 방법의 유효성을 검증하기 위해 소셜 이슈 4 개에 대한 트윗 데이터에서의 실험을 통하여 상위 100 개의 결과에서의 정확률(P@100) 76.6%의 성능을 보였다. 실험을 통해 제안 방법이 신뢰성 높은 사용자의 트윗을 추출하는데 효과적인 방법임을 알 수 있다.
Annual Conference on Human and Language Technology
/
2003.10d
/
pp.22-29
/
2003
시간정보는 사건 탐지/추적 시스템은 물론 정보 추출, 질의/응답 시스템 등에서 매우 중요한 역할을 한다. 본 연구에서는 한국어 신문 기사를 대상으로 시간 표현을 추출하고 정규화한 후 사건 관련 동사와 연결하는 자동화된 방법들을 제안하였다. 시간 표현을 추출하기 위해서 품사정보로 구축된 패턴과 시간 표현 어휘가 사용되었고, 정규화 과정과 사건 관련 동사와의 연결을 위한 규칙이 만들어졌다. 한국어 신문을 대상으로 제안한 방법의 단계별 평가를 수행하였고, 제안하는 방법의 확장성을 보이기 위해 서로 다른 도메인에도 실험을 하였다.
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.490-492
/
2022
최근 사법분야에 지능형 법률 서비스를 제공하게 되면서 학습데이터로서 판결문의 중요성이 높아지고 있다. 그중 범죄사실은 수사자료와 유사하여 범죄수사에 귀중한 자료역할을 하고 있지만, 주체가 생략되거나 긴 문장의 형태로 인해 구성요건을 추출하고 사건의 인과관계 파악이 어려울 수 있어 이를 분석하는데 적지 않은 시간과 인력이 소비될 수밖에 없다. 따라서, 본 논문에서는 사전학습모델을 활용한 개체명 인식과 형태소 분석기반 이벤트 추출기법을 범죄사건 재구성에 적용하여 핵심 사건추출을 간편화하고 시각적으로 표현해 전체적인 사건 흐름 이해도를 향상할 수 있는 방법론을 제안하고자 한다.
Temporal information plays an important role in natural language processing (NLP) applications such as information extraction, discourse analysis, automatic summarization, and question-answering. In the topic detection and tracking (TDT) area, the temporal information often used is the publication date of a message, which is readily available but limited in its usefulness. We developed a relatively simple NLP method of extracting temporal information from Korean news articles, with the goal of improving performance of TDT tasks. To extract temporal information, we make use of finite state automata and a lexicon containing time-revealing vocabulary. Extracted information is converted into a canonicalized representation of a time point or a time duration. We first evaluated the extraction and canonicalization methods for their accuracy and investigated on the extent to which temporal information extracted as such can help TDT tasks. The experimental results show that time information extracted from text indeed helps improve both precision and recall significantly.
Proceedings of the Korea Information Processing Society Conference
/
2011.11a
/
pp.395-398
/
2011
트위터 사용자들은 어떠한 이슈에 대해 트위터를 통해 빠르고 간결하게 다른 사람들과의 지속적인 커뮤니케이션을 원하고, 이러한 특징은 이슈 별 사건에 따라 트윗 개수에 영향을 미치게 된다. 만약 어느 하나의 사회적 이슈에 대해 어떠한 사건이 일어나게 되면 그때의 트윗 개수는 폭발적으로 증가하게 된다. 본 논문에서는 이러한 특징을 이용하여 트위터 자료를 시간별로 분석하여 사건을 인식하고, 감성 자질과 카이제곱 값을 이용해 해당 날짜에 대한 핵심 사건을 추출한다.
Proceedings of the Korean Information Science Society Conference
/
2012.06a
/
pp.340-342
/
2012
사람관련 사건을 실시간으로 인지하거나 빠르게 사건 관련 증거를 확보하기 위해서는 대량의 비디오 감시 데이터로부터 사람 관련 정보를 빠르게 찾을 수 있어야 하는데 기존의 시스템에서는 모든 프레임으로부터 주석 편집자가 수작업으로 관련 정보를 추출하여 색인해야 하기 때문에 많은 주석 시간을 필요로 하는 문제를 갖고 있었다. 본 논문에서는 대량의 방범용 비디오 감시 데이터로부터 사람 관련 사건 정보를 빠르게 찾을 수 있도록 지원하기 위해 전체 비디오 데이터 중에서 사람의 출현과 퇴장을 기준으로 키 프레임 구간을 추출하고, 키 프레임에서만 사람 관련 정보를 추출하여 사람 관련 주요 정보를 자동으로 추출하여 XML 스키마 형식으로 색인하는 비디오 주석 시스템을 개발하였다. 또한, 색인된 XML 데이터에 대해 구조 및 내용 기반 질의를 이용하여 쉽고 빠르게 검색할 수 있도록 하기 위해 XPATH 질의 인터페이스를 구현 하였다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.