• Title/Summary/Keyword: 사건 기반 동기화

Search Result 12, Processing Time 0.015 seconds

Design and Implementation of DEVSim++ and DiskSim Interface for Interoperation of System-level Simulation and Disk I/O-level Simulation (시스템수준 시뮬레이션과 디스크 I/O수준 시뮬레이션 연동을 위한 DEVSim++과 DiskSim 사이의 인터페이스 설계 및 구현)

  • Song, Hae Sang;Lee, Sun Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.131-140
    • /
    • 2013
  • This paper deals with the design and implementation of an interface for interoperation between DiskSim, a well-known disk simulator, and a system-level simulator based on DEVSim++. Such inter-operational simulation aims at evaluation of an overall performance of storage systems which consist of multiple computer nodes with a variety of I/O level specifications. A well-known system-level simulation framework, DEVSim++ environment is based on the DEVS formalism, which provides a sound semantics of modular and hierarchical modeling methodology at the discrete event systems level such as multi-node computer systems. For maintainability we assume that there is no change of the source codes for two heterogeneous simulation engines. Thus, we adopt a notion of simulators interoperation in which there should be a means to synchronize simulation times as well as to exchange messages between simulators. As an interface for such interoperation DiskSimManager is designed and implemented. Various experiments, comparing the results of the standalone DiskSim simulation and the interoperation simulation using the proposed interface of DiskSimManager, proved that DiskSimManager works correctly as an interface for interoperation between DEVSim++ and DiskSim.

DOVE : A Distributed Object System for Virtual Computing Environment (DOVE : 가상 계산 환경을 위한 분산 객체 시스템)

  • Kim, Hyeong-Do;Woo, Young-Je;Ryu, So-Hyun;Jeong, Chang-Sung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.2
    • /
    • pp.120-134
    • /
    • 2000
  • In this paper we present a Distributed Object oriented Virtual computing Environment, called DOVE which consists of autonomous distributed objects interacting with one another via method invocations based on a distributed object model. DOVE appears to a user logically as a single virtual computer for a set of heterogeneous hosts connected by a network as if objects in remote site reside in one virtual computer. By supporting efficient parallelism, heterogeneity, group communication, single global name service and fault-tolerance, it provides a transparent and easy-to-use programming environment for parallel applications. Efficient parallelism is supported by diverse remote method invocation, multiple method invocation for object group, multi-threaded architecture and synchronization schemes. Heterogeneity is achieved by automatic data arshalling and unmarshalling, and an easy-to-use and transparent programming environment is provided by stub and skeleton objects generated by DOVE IDL compiler, object life control and naming service of object manager. Autonomy of distributed objects, multi-layered architecture and decentralized approaches in hierarchical naming service and object management make DOVE more extensible and scalable. Also,fault tolerance is provided by fault detection in object using a timeout mechanism, and fault notification using asynchronous exception handling methods

  • PDF