• Title/Summary/Keyword: 뿌리와류

Search Result 7, Processing Time 0.022 seconds

Research on the Design Methods of Appendages to Reduce Vortex Flows Around Underwater Vehicles (수중운동체 주위 와류유동 저감을 위한 부가물 형상 설계기법 연구)

  • Sang-Jae Yeo;Suk-Yoon Hong;Jee-Hun Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.252-261
    • /
    • 2024
  • This research establishes design standards for vortex reduction devices (VRDs) aimed at minimizing underwater radiated noise by mitigating horseshoe vortex (HSV) and root vortex (RV) generated at the junction of appendages and the hull of underwater vehicles. Initial analysis replaced the influence of appendage dimensions and flow velocity with the Reynolds number by verifying the Reynolds similarity of vortex flows. The three-dimensional surfaces of VRDs were parameterized using Bezier curves. Optimal length-to-height ratios were identified by evaluating the vortex reduction performances of VRDs with various dimensions. Ultimately, non-dimensional design standards were derived for VRDs, ensuring effective vortex reduction across any appendage, thereby enhancing stealth performance.

Papers : Vortex Flow and Aerodynamic Load Characteristics of the Delta Wing / LEX Configuration in Sideslip (논문 : 옆미끄럼이 있는 삼각 날개 / LEX 형상의 와류와 공력 특성)

  • Son,Myeong-Hwan;Lee,Gi-Yeong;Baek,Seung-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.37-45
    • /
    • 2002
  • The vortex flow and aerodynamic load characteristics of a $65^{\circ}$ sweep delta wing with the leading edge extension in sideslip condition is investigated experimentally. The freestream velocity is 40 m/sec, which corresponds to a Reynolds number per meter of $1.76{\times}10^6$ based on the wing root chord. The angles of attack range from $12^{\circ}$ to $28^{\circ}$, and the sideslip angles treated are $0^{\circ}$ , $-10^{\circ}$, $-20^{\circ}$. The LEX vortex of the leeward side. The LEX and wing vortics coalesce to to become a concentrated strong vortex or to break down at down at downstream position. Due to the interation of the LEX and wing vortices, a high suction pressure is maintained on the windward wing surface, and a low suction pressure is formed on the leeward wing surface

Papers : Effect of Sideslip on the Vortex Flow over a Delta Wing (논문 : 옆미끄럼각이 삼각 날개 와류에 미치는 영향)

  • Son,Myeong-Hwan;Lee,Gi-Yeong;Baek,Seung-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • The effects of sideslip on the vortex over a delta wing was investigated experimentallu at a free strean velocity of 40 m/sec, corresponding to a Reynolds number of 1.76$\times$$10^6$, based on the root chord. The angles of attack ranged from $16{^{\circ}}$ to $28{^{\circ}}$, and the sideslip angles treated were $0{^{\circ}}$, $-10{^{\circ}}$, and $-20{^{\circ}}$. It was observed that the sideslip decreased the strengths of the vortices of both windward and leeward sides of the wing, and promoted the vortex breakdown on the windward side. At sideslip angle of $-10{^{\circ}}$, the vortex strength of leeward side was increased as the angle of attack increased. This asymmetric development and breakdown of vortices in sideslip condition would cause an abrubt change of the rolling moment at a high angle of of attack, which could be considered as a rolling moment instability.

Visualization Study of High-Incidence Vortical Flow over the LEX/Delta Wing Configuration with Sideslip (옆미끄럼을 갖는 LEX/삼각 날개 형상에 대한 높은 받음각 와유동의 가시화 연구)

  • Sohn, Myong-Hwan;Lee, Ki-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.109-117
    • /
    • 2002
  • An off-surface flow visualization experiments have been performed to investigate the flow field over a delta wing with the leading edge extension(LEX). The model is a flat wing with $65^{\circ}$ sweepback angle. The free stream velocity is 6.2 m/s, which corresponds to Reynolds number of $4.4\times10^5$ based on the wing root chord. The angle of attack and sideslip angle range from $16^{\circ}\sim28^{\circ}$ and $0^{\circ}\sim-15^{\circ}$, respectively. The visualization technique of using the micro water-droplet and the laser beam sheet enabled to observe the vortical flow structures, which can not be obtained by 5-hole probe measurements. With sideslip angle, the interaction and breakdown of the LEX and wing vortices was promoted in the windward side, whereas, it was suppressed in the leeward side.

Combined Effects of Sideslip and AOA on the Vortical Flow of Delta Wing (삼각날개 와류장에서의 옆미끄럼과 받음각의 복합효과)

  • Lee, Gi Yeong;Son, Myeong Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.17-24
    • /
    • 2003
  • This paper presents results from steady wind tunnel test conducted on a $65^{\circ}$ delta wing at a root chord Reynolds number of $1.76{\times}10^6$. In these experiments, the wing was instrumented with 188 pressure taps, conjunction with powerful multi-channel data logging system, allowed the wing upper surface pressure distribution to be measured. Analysis indicates that the wing upper surface distribution can provide considerable insight into the comvined aerodynamic effects of angle of attack and sideslip on the wing. In a sideslip condition, the strength of the vortex on the windward side is much stronger than that of leeward side. This asymmetric pressure disstribution betwwen each side of wings result in a negative value of rolling moment. However, at a certatin range of angle of attck and sideslip angle(${\alpha}$=$24^{\circ}{\sim}36^{\circ}C$, ${\beta}$=$-5^{\circ}{\sim}-15^{\circ}C$) abrupt change of sign of rolling monent, rolling monent reversal, was observed.

Vegetation Development Mechanism and Flood Drainage Capability Reduction Characteristic at Downstream of Dams (댐하류 하도의 식생 메카니즘과 홍수소통능력 저감특성)

  • Yeo, Woon Ki;Lim, Ki Seok;Lee, Seung Yun;Jee, Hong Kee;Lee, Soontak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.922-926
    • /
    • 2004
  • 1970년대부터 시작된 산업화와 도시화는 국토 전반에 걸쳐서 개발을 촉진시켰으며, 그 결과로 나타나기 시작한 홍수재해와 용수부족은 보다 많은 저수시설을 요구하게 되었다. 즉, 홍수유출을 저감시키기 위해서 유역의 저류기능을 강화시킬 수 있는 댐 건설은 이수적인 측면에서 안정적인 용수공급을 보장해주는 수단으로 겸용되어 왔으며, 특히 다목적댐이 건설되면서 하도의 첨두홍수유출량을 줄이는데 크게 기여해 왔다. 댐에 의해 홍수가 사실상 사라진 댐 하류에서는 유사이송이 줄어들면서 주수로는 좁아지며, 낮아진다. 홍수가 없어진 주변 홍수터에는 식생이 활착하여 그 폭이 점차 커지고 하상은 높아진다. 과거 댐 건설 전까지 불안정했던 작은 독려 사주에도 홍수가 없어지면서 식생이 뿌리를 내리게 되고 이로 인하여 식생에 의한 난류변화와 와류의 형성으로 주변에 유사의 퇴적이 증가하게 된다. 결과적으로 식생이 활착할 수 있는 면적이 확장되면서 사주는 점차 넓어진다. 특히, 홍수터나 사주의 외딴 관목 식생에 의한 주변 하상의 세굴, 미립토사의 퇴적, 하상재료의 분급효과는 생태 서식 측면에서 귀중한 휴식처나 피난처를 제공하게 된다. 따라서 본 연구에서는 하도의 상류에 댐이 건설되고 난 후에 댐하류의 하도에서 발생하고 있는 식생 메카니즘과 이로 인한 조도증가와 유속저하 및 홍수소통능력의 저감현상을 규명하였다.

  • PDF

Surface pressure measurement on a wing of SWIM by using PSP (PSP를 이용한 항공기 형상 모형 날개 표면 압력 측정)

  • Jung, Hye-Jin;Kwon, Kijung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.337-345
    • /
    • 2008
  • this study, three dimensional surface pressure distributions of SWIM whose main wing has NACA4412 airfoil with NACA0012 flaps were experimentally measured by pressure sensitive paint. Surface pressures on suction and pressure sides of the wing were measured by changing an angle of attack at a Reynolds number of 3.1x105 in KARI 1m subsonic wind tunnel. The experimental results showed that as an angle of attack increases minimum pressure region on a suction side moved from the wing root to the tip and low pressure region around trailing edge of the wing tip which causes wing tip vortex was observed. Although low pressure region at the tip still observed at an angle of attack 15 deg., other area on a suction side showed flat pressure distribution in a span-wise direction. It was also observed that the mean value of pressure coefficients was about 0.077 through a comparison between PSP and pressure taps at the same test conditions.