• Title/Summary/Keyword: 빠른 핸드오버

Search Result 84, Processing Time 0.016 seconds

QoS-Aware Group Scan Scheduling in WiMAX Networks (WiMAX 네트워크에서 QoS 기반의 그룹 스캔 스케쥴링 기법)

  • Choi, Jae-Kark;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.186-195
    • /
    • 2010
  • For the fast target base station channel decision in WiMAX networks, fast group scanning scheme was suggested, in which mobile stations in proximity of each other form a group and scan the candidate channels dispersively. However, the previous group scanning scheme does not consider the different QoS requirements of each MS in a group. In this paper we propose the enhanced group scanning scheme, so-called QoS-aware group scan scheduling scheme, that makes mobile stations in a group scan the candidate channels without deteriorating the QoS requirements. We introduce the QoS-aware channel scanning concept of a individual mobile station and show the different scanning latencies due to the different QoS requirements. With the help of the efficient channel allocation by the serving BS, in the proposed scanning scheme, a mobile station with relatively higher QoS in a group scans less amount of candidate channels than the others with relatively lower QoS, while the mobile stations in a group still guarantees the fast target base station decision. The performance results show that our proposed scanning scheme results in the fast target base station decision while considering the QoS requirements of each MS.

Reinforcement Learning based Multi-Channel MAC Protocol for Cognitive Radio Ad-hoc Networks (인지무선 에드혹 네트워크를 위한 강화학습기반의 멀티채널 MAC 프로토콜)

  • Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1026-1031
    • /
    • 2022
  • Cognitive Radio Ad-Hoc Networks (CRAHNs) enable to overcome the shortage of frequency resources due to the increase of radio services. In order to avoid interference with the primary user in CRANH, channel sensing to check the idle channel is required, and when the primary user appears, the time delay due to handover should be minimized through fast idle channel selection. In this paper, throughput was improved by reducing the number of channel sensing and preferentially sensing a channel with a high probability of being idle, using reinforcement learning. In addition, we proposed a multi-channel MAC (Medium Access Control) protocol that can minimize the possibility of collision with the primary user by sensing the channel at the time of data transmission without performing periodic sensing. The performance was compared and analyzed through computer simulation.

Cellular IP and RSVP based on IPv6 (IPv6 기반의 셀룰러 IP와 RSVP)

  • 박승균;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.12C
    • /
    • pp.1245-1250
    • /
    • 2002
  • For recent years, the environment of use on internet has been changed from the wired internet access to the wireless internet access increasingly, and the use of real time application data has been increased. Therefore the research and evolution of wireless network for providing of user's mobility and QoS at the same time must be essential. IETF already proposed Mobile IPv6 for providing mobility and RSVP for QoS through resource reservation. These future are expected to be used not only wired network but also wireless network. But there are not yet proposed the integration and efficient interworking of two mechanism. For the solution of problem on efficient interworking issue, for instance signaling overhead and reservation delay increasing due to often handoff, this paper first proposed to use of IETF Cellular IP based on Mobile IPv6 for wireless network model with fast mobility and a improved RSVP mechanism using the flow label field in IPv6 header.

Performance Analysis of Fast Handover Scheme Based on Secure Smart Mobility in PMIPv6 Networks (프록시 모바일 IPv6 네트워크에서 안전한 스마트 이동성에 기반한 빠른 핸드오버 기법의 성능분석)

  • Yoon, KyoungWon;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.121-133
    • /
    • 2013
  • Defect-free transfer service on the Next-generation wireless network extensive roaming mobile node (MN) to provide efficient mobility management has become very important. MIPv6(Mobility IPv6) is one of mobility management scheme proposed by IETF(Internet Engineering Task Force), and IPv6-based mobility management techniques have been developed in various forms. One of each management techniques, IPv6-based mobility management techniques for PMIPv6 (MIPv6) system to improve the performance of a variety of F-PMIPv6 (Fast Handover for Proxy MIPv6) is proposed. However, the F-PMIPv6 is cannot be excellent than PMIPv6 in all scenarios. Therefor, to select a proper mobility management scheme between PMIPv6 and F-PMIPv6 becomes an interesting issue, for its potenrials in enhancing the capacity and scalability of the system. In this paper, we develop an analytical model to analyze the applicability of PMIPv6 and F-PMIPv6. Based on this model, we design an Secure Smart Mobility Support(SSM) scheme that selects the better alternative between PMIPv6 and F-PMIPv6 for a user according to its changing mobility and service characteristics. When F-PMIPv6 is adopted, SSM chooses the best mobility anchor point and regional size to optimize the system performance. Numerical results illustrate the impact of some key parameters on the applicability of PMIPv6 and F-PMIPv6. Finally, SSM has proven even better result than PMIPv6 and F-PMIPv6.