• Title/Summary/Keyword: 빙두께 계측

Search Result 4, Processing Time 0.024 seconds

Thickness Measure and Characteristic Length for Effective Young's Modulus of Model Ice Plate in the Ice Basin (빙해수조 모형빙판의 두께 계측과 유효탄성계수용 특성길이 연구)

  • Lee, Jae-Hwan;Choi, Bong-Kyun;Lee, Chun-Ju
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.353-360
    • /
    • 2014
  • The model ice is created at KRISO (Korea Research Institute for Ships and Ocean Engineering) ice basin where model ship is tested to obtain the necessary data in order to design the ice breaking vessels and ocean structures operating in the northern pole sea area. Through the model ship test, ice breaking, clearing, ice-ship and ice-propeller interaction behavior can be obtained. Since mechanical properties of ice plate are required for the model test, some tests are performed to obtain the properties in this paper. First, ultrasonic devide is used to measure the thickness of the model ice plate and the results show the possibility of using ultrasonic method, yet more sophisticated device or special sensors are required to measure the ice thickness completely. And the defection of ice plate is measured using LVDT to compute the characteristic length of ice plate on the fluid, which is used to get the effective Young's modulus of model ice.

Effects of Ship Speed and Ice Thickness on Local Ice Loads Measured in Arctic Sea (북극해에서 계측된 국부 빙하중에 대한 선속 및 빙두께 영향)

  • Lee, Tak-Kee;Lee, Jong-Hyun;Rim, Chae-Whan;Choi, Kyungsik
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.82-87
    • /
    • 2013
  • The icebreaking research vessel ARAON conducted her second ice trial in the Arctic Ocean during the summer season of 2010. During this voyage, the local ice loads acting on the bow of the port side were measured using 14 strain gauges. The measurement was carried out during icebreaking while measuring the thickness of the ice every 10 m. The obtained strain data were converted to the equivalent stress values, and the effects of the ship speed and ice thickness on the ice load were investigated. As a result, it was found that a faster speed produced a larger stress, according to the variation in the peak values below an ice thickness condition of 1.5 m. Meanwhile, the effect of the ice thickness on the ice load was not clear.

A study on the optimum operation of model ice in Maritime & Ocean Engineering Research Institute(MOERI) (빙수조 모형빙 활용 최적화 방안 연구)

  • Kim, Hyun Soo;Lee, Chun-Ju;Jeong, Uh-Cheul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.109-115
    • /
    • 2011
  • The ice tank is important facility to check the performance of the ship and offshore in ice condition before the construction. MOERI(Maritime & Ocean Engineering Research Institute) constructed ice model basin on the end of 2010. The ice technology to know the phenomena of ice near the ship and to estimate power of the ship in model scale is the main characteristic of the ice model basin. To achieve this goal in one ice sheet, making of test plan and feasibility check of test possibility have to review in the beginning stage of the every test. This paper describes the number of maximum resistance and self propulsion test in a sheet of level ice and proposes the methodology to optimize pack ice, rubble ice, brash ice and ice ridge test in MOERI ice tank. The feasibility of free running test to know maneuvering performance in ice field and some specific idea to measuring ice thickness and ice ridge shape was proposed.

Study on the Correction Method of Ice Strength and Thickness Applied to the Sea Trial Condition Based on the Ice Model Test Results (빙두께 및 강도 보정기법을 이용한 모형시험결과의 실선시운전 적용연구)

  • Lee, Seung-Ki;Kim, Moon-Chan;Lee, Won-Jun;Kim, Hyun-Soo;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.457-464
    • /
    • 2011
  • This paper deal with the validation of correction method of ice strength and thickness to the sea trial condition based on the ice model test results. It is very difficult to conduct the model test corresponding to the sea trial condition exactly. In addition, the available sea trial data is not sufficient for the validation of correction method. In the present study, the model test results of Terry-Fox ice breker have been used to compare the corrected results of sea trial test by varying its thickness and strength of model ice. The HSVA and ITTC methods have been applied to the present comparisions and the required power has been also validated by using the HSVA method. There are rather good agreement between the sea trial result and model test corrected by the HSVA and ITTC method. The more comparisons are expected to be carried out in near future.